Project description:To investigate the gene regulatory mechanisms driving T cell development, we generated single-cell transcriptomics and chromatin accessibility data from a human fetal thymus sample at 10 weeks of gestation.
Project description:To investigate the gene regulatory mechanisms driving T cell development, we generated single-cell transcriptomics and chromatin accessibility data from a human fetal thymus sample at 10 weeks of gestation.
Project description:We performed scRNA-seq on epithelial and stromal cells isolated from fetal thymus, bronchus, esophageal and lung cells to identify drivers of lieage commitment.
Project description:Plasmodium-specific CD4+ T cells from mice infected with Plasmodium chabaudi chabaudi AS parasites were recovered at Days 0, 4, 7, and 32 to undergo processing and to generate scATAC-seq dataset. At Day 7, CXCR5+ and CXCR6+ cells were recovered separately. At Day 32, mice were administered with either saline or artesunate (intermittent artesunate therapy - IAT). scATAC-seq dataset was analysed to investigate epigenomic landscapes of CD4+ T cells from effector to memory states.
Project description:To study developmental trajectories in brain organoids, we conducted scRNA-seq and scATAC-seq in parallel on a dense timecourse of early development.
Project description:Cell-to-cell variation is a universal feature of life that impacts a wide range of biological phenomena, from developmental plasticity to tumor heterogeneity. While recent advances have improved our ability to document cellular phenotypic variation the fundamental mechanisms that generate variability from identical DNA sequences remain elusive. Here we reveal the landscape and principles of cellular DNA regulatory variation by developing a robust method for mapping the accessible genome of individual cells via assay of transposase accessible chromatin sequencing (ATAC-seq). Single-cell ATAC-seq (scATAC-seq) maps from hundreds of single-cells in aggregate closely resemble accessibility profiles from tens of millions of cells and provides insights into cell-to-cell variation. Accessibility variance is systematically associated with specific trans-factors and cis-elements, and we discover combinations of trans-factors associated with either induction or suppression of cell-to-cell variability. We further identify sets of trans-factors associated with cell-type specific accessibility variance across 6 cell types. Targeted perturbations of cell cycle or transcription factor signaling evoke stimulus-specific changes in this observed variability. The pattern of accessibility variation in cis across the genome recapitulates chromosome topological domains de novo, linking single-cell accessibility variation to three-dimensional genome organization. All together, single-cell analysis of DNA accessibility provides new insight into cellular variation of the “regulome.” Profiles of single cell epigenomes, assayed using scATAC-seq, across 8 cell types and 4 targeted cell manipulations. The complete data set contains a total of 1,632 assayed wells.