Project description:Transcription profiles in BL21, BL21/pOri1 and BL21/pOri2 were analysed using DNA microarray technology. BL21, BL21/pOri1 or BL21/pOri2 strains were cultured at chemostat status and harvested after the cultivation arrived steady status. Keywords: Effects of plasmid DNA on Escherichia coli metabolism
Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:Despite the characterization of many aetiologic genetic changes. The specific causative factors in the development of sporadic colorectal cancer remain unclear. This study was performed to detect the possible role of Enteropathogenic Escherichia coli (EPEC) in developing colorectal carcinoma.
Project description:We performed a high-throughput mapping of the 5’ end transcriptome of the pAA plasmid of the clinical Escherichia coli O104:H4 (E. coli O104:H4) isolate LB226692. We employed differential RNA-sequencing (dRNA-seq), a terminator exonuclease (TEX)-based RNA-seq approach allowing for the discrimination of primary and processed transcripts. This method has proven to be a powerful tool for the mapping of transcription start sites (TSS) and detection of non-coding RNAs (ncRNAs) in bacteria. We catalogued pAA-associated TSS and processing sites on a plasmid-wide scale and performed a detailed analysis of the primary transcriptome focusing on pAA virulence gene expression.
Project description:Plasmids are widely used across molecular biology and are becoming increasingly valuable products, but robust plasmid replication is held back by stability issues in the host. This study investigated how Escherichia coli responds to plasmid stress at the transcriptional level by modulating plasmid copy number, plasmid size, selection marker and carbon source. This GEO contains controls from this study alone.
Project description:Escherichia coli strain C is the last of five E. coli strains (C, K12, B, W, Crooks) designated as safe for laboratory purposes whose genome has not been sequenced. We found that E. coli C forms more robust biofilms than the other four laboratory strains. Here we present the complete genomic sequence of this strain in which we utilized high resolution optical mapping to confirm a large inversion in comparison to other strains. DNA sequence comparison revealed the absence of several genes involved in biofilm formation, such as antigen 43, waaSBOJYZUL for LPS synthesis, and cpsB for curli synthesis. The main difference affecting biofilm formation is the presence of an IS3-like insertion sequence in front of the carbon storage regulator csrA gene. This insertion is located 86 bp upstream of the csrA start codon inside the -35 region of P4 promoter and blocks the transcription from the sigma32 and sigma70 promoters P1-P3 located further upstream. Analysis of gene expression profiles in planktonic and biofilm attached cells by the RNAseq method allows better understanding of this regulatory pathway in E. coli.