Project description:The aim of this analysis was to analyze gene expression in developmental mutants of the filamentous ascomycete Sordaria macrospora. RNA was isolated from total mycelia, or young fruiting bodies (protoperithecia) were isolated by laser microdissection and RNA was extracted, amplified and used for RNA-sequencing.
Project description:The white button mushroom Agaricus bisporus is the most widely produced edible fungus with a great economical value. Its commercial cultivation process is often performed on wheat straw and animal manure based compost that mainly contains lignocellulosic material as a source of carbon and nutrients for the mushroom production. As a large portion of compost carbohydrates are left unused in the current mushroom cultivation process, the aim of this work was to study wild-type A. bisporus strains for their potential to convert the components that are poorly utilized by the commercial strain A15. Growth profiling suggested different abilities for several A. bisporus strains to use plant biomass derived polysaccharides, as well as to transport and metabolize the corresponding monomeric sugars. Six wild-type isolates with diverse growth profiles were compared for mushroom production to A15 strain in semi-commercial cultivation conditions. Transcriptome and proteome analyses of the three most interesting wild-type strains and A15 indicated that the unrelated A. bisporus strains degrade and convert plant biomass polymers in a highly similar manner. This was also supported by the chemical content of the compost during the mushroom production process. Our study therefore reveals a highly conserved physiology for unrelated strains of this species during growth in compost.
Project description:The aim of this analysis was to analyze gene expression in young fruiting bodies (protoapothecia) of the filamentous ascomycete Ascodesmis nigricans. Young fruiting bodies were isolated by laser microdissection, RNA was extracted, amplified and used for RNA-sequencing. The resulting data were compared to data from total vegetative and sexual mycelium.
Project description:The aim of this analysis was to analyze gene expression in young fruiting bodies of the filamentous ascomycete Pyronema confluens. Young fruiting bodies were isolated by laser microdissection, RNA was extracted, amplified and used for RNA-sequencing. The resulting data were compared to data from total vegetative and sexual mycelium from a previous analysis.
Project description:The aim of this analysis was the identification of candidate genes that might be regulated in a circadian manner in the filamentous ascomycete Pyronema confluens. The fungus was grown in submerged culture to promote vegetative growth, and after a period in constant light, the samples were shifted to darkness (DD). Cultures were sampled after 24 and 36 hours in DD. The samples were used for RNA-seq analysis, and candidate genes with significantly higher expression after 24 vs. 36 hours or the reverse were further analyzed with RT-qPCR.
Project description:The aim of this analysis was to analyze nucleosome distribution in the filamentous ascomycete Sordaria macrospora by micrococcal nuclease digestion and sequencing.
Project description:Neurospora intermedia is a heterothallic filamentous ascomycete. In this study we use microarray technology to study the difference in gene expression between vegetative growth and early reproductive development.
Project description:In filamentous ascomycete fungi, the utilization of alternate carbon sources is influenced by the zinc finger transcription factor CreA/CRE-1, which encodes a carbon catabolite repressor protein homologous to Mig1 from Saccharomyces cerevisiae. In Neurospora crassa, deletion of cre-1 results in increased secretion of amylase and β-galactosidase. Here, we determined the CRE-1 regulon by investigating the transcriptome of a Δcre-1 strain compared to wild type when grown on Avicel versus minimal medium (MM). Our data provide comprehensive information on the CRE-1 regulon in N. crassa and contribute to deciphering the global role of carbon catabolite repression in filamentous ascomycete fungi during plant cell wall deconstruction.
Project description:Agaricus bisporus is a soil-inhabiting fungus which is cultivated for production of white button mushrooms. A disease of A. bisporus has been previously described with a range of disease symptoms (yield loss, pinning delay, cap distortions and cap browning) which has been given collective name of “Mushroom Virus X” (MVX). The causes of this disease are not clear however prior to this research an association was found between the disease and double-stranded RNA molecules in the mushroom fruitbodies. The experiment was designed to examine causes and host responses of the disease causing the Brown Cap symptom in the cultivated mushroom A. bisporus. This microarray experiment was performed before the Agaricus bisporus genome was sequenced. The gene sequences used to design probes were from known and novel A. bisporus sequences and sequences of transcript fragments identified by Suppression Subtractive Hybridization of non-symptomatic and virus-diseased A. bisporus mushroom fruitbodies. The A. bisporus mushroom fruitbodies were grown on composted wheat straw using commercial cultivation procedures. The gene expression comparison was made of RNA isolated from 32 mushroom fruitbodies (Agaricus bisporus) samples: 20 samples from 5 separate virus-infected commercial mushroom farms with crops displaying the brown symptom (4 replicate samples per farm) and 12 samples from a non-infected crop grown at the University of Warwick. The precise composition of the viral load was the subject of this and future research/papers. Abstract of Manuscript submitted to Applied and Environmental Microbiology: Characterizing the viral agents causing brown cap mushroom disease of Agaricus bisporus by Daniel Eastwood, Julian Green, Helen Grogan, and Kerry Burton (Paper #AEM01093-15). The symptoms of viral infections of fungi range from cryptic to severe but there is little knowledge of the factors involved in this transition of fungal/viral interactions. Brown Cap Mushroom Disease of the cultivated Agaricus bisporus is economically important and represents a model system to describe this transition. Differentially expressed transcript fragments between mushrooms showing the symptoms of Brown Cap Mushroom Disease and control white non-infected mushrooms have been identified and sequenced. Ten of these RNA fragments have been found to be up-regulated over a thousand-fold between diseased and non-diseased tissue but are absent from the Agaricus bisporus genome sequence and hybridise to double-stranded RNA’s extracted from diseased tissue. We hypothesize these transcript fragments are viral and represent components of the disease-causing agent, a bipartite virus with similarities to the family Partitiviridae. The virus fragments were found at two distinct levels within infected mushrooms, at raised levels in infected, non-symptomatic, white coloured mushrooms and much greater levels (3,500-87,000 times greater) in infected mushrooms exhibiting brown colouration. In addition, differential screening revealed 9 up-regulated and 32 down-regulated host Agaricus bisporus transcripts. Chromametric analysis was able to distinguish colour differences between non-infected white mushrooms and white infected mushrooms at an early stage of mushroom growth. This method may be the basis for an ‘on-farm’ disease detection assay.