Project description:Background Gastric Helicobacter pylori colonization leads to iron deficiency anemia (IDA), especially in children and adolescents. However the pathogenesis is poorly understood. Objective We sought to identify specific H. pylori genes involved in IDA development, by comparing bacterial genome-wide expression profiling in patients affected or not. Methods H. pylori were isolated from four children with IDA and four from matched controls without IDA. Based on these isolates, cDNA microarrays under iron-replete or depleted conditions were systematically performed to compare gene expression profiles at the whole genome level. Real-time reverse-transcription (RT-) PCR and protein assays were performed for further assessing the profile differentiation of the identified H. pylori IDA-associated genes. Results We identified 29 and 11 genes with significantly higher or lower expression in the IDA isolates compared to non-IDA isolates, respectively. Especially notable were higher expression of sabA gene encoding sialic acid-binding adhesin in the IDA isolates, which was confirmed by real-time RT-PCR study. Moreover, iron-depletion in vitro led to up-regulation of fecA1 and frpB1 genes and down-regulation of pfr, as predicted. Known iron-regulated genes such as fur, pfr, fecA, and feoB did not significantly differ between both groups. The IDA isolates had significantly higher expression of vacuolating cytotoxin gene vacA than non-IDA isolates, consistent with the results of VacA protein assays. There were no significant differences in bacterial growth value between IDA and non-IDA isolates. Conclusions It is likely that H. pylori carrying high expression of sabA causes IDA, especially in children and adolescents who have increased daily iron demand. In addition, it is possible that several host-interactive genes, including vacA, may play a synergistic role for sabA in IDA development.
Project description:This study identified differentially expressed miRNAs exclusively in invasive ductal adenocarcinoma. The epithelial-mesenchymal transition (EMT) is a critical step for pancreatic cancer cells as an entry of metastatic disease. Wide variety of cytokines and signaling pathways are involved in this complex process while the entire picture is still cryptic. Recently, miRNA was found to regulate cellular function including EMT by targeting multiple mRNAs. We performed comprehensive analysis of miRNA expression profiles in invasive ductal adenocarcinoma (IDA), intraductal papillary mucinous adenoma (IPMA), intraductal papillary mucinous carcinoma (IPMC) and human pancreatic cancer cell line to elucidate essential miRNAs which regulate invasive growth of pancreatic cancer cells. Along with higher expression of miR-21 which has been shown to be highly expressed in IDA, reduced expression of miR-126 in IDA and pancreatic cancer cell line was detected. Re-expression of miR-126 in pancreatic cancer cells resulted in reduced cellular migration, invasion and induction of epithelial marker E-cadherin. We demonstrated for the first time that the miR-126 plays essential role in the inhibition of invasive growth of pancreatic cancer cells.
Project description:To study the mechanism underlying IDA-induced anti-tumor activity for Abi resistance, LNCaP-Abi cells were treated with Abi alone and in combination with IDA for 24 h. Protein profiles were determined by mass spectrometry
Project description:This study identified differentially expressed miRNAs exclusively in invasive ductal adenocarcinoma. The epithelial-mesenchymal transition (EMT) is a critical step for pancreatic cancer cells as an entry of metastatic disease. Wide variety of cytokines and signaling pathways are involved in this complex process while the entire picture is still cryptic. Recently, miRNA was found to regulate cellular function including EMT by targeting multiple mRNAs. We performed comprehensive analysis of miRNA expression profiles in invasive ductal adenocarcinoma (IDA), intraductal papillary mucinous adenoma (IPMA), intraductal papillary mucinous carcinoma (IPMC) and human pancreatic cancer cell line to elucidate essential miRNAs which regulate invasive growth of pancreatic cancer cells. Along with higher expression of miR-21 which has been shown to be highly expressed in IDA, reduced expression of miR-126 in IDA and pancreatic cancer cell line was detected. Re-expression of miR-126 in pancreatic cancer cells resulted in reduced cellular migration, invasion and induction of epithelial marker E-cadherin. We demonstrated for the first time that the miR-126 plays essential role in the inhibition of invasive growth of pancreatic cancer cells. The expression profile of miRNA in each sample or cell line was evaluated by microarray and cluster analysis was performed.
Project description:Acute myeloid leukemia (AML) is an invasive hematopoietic malignancy requiring novel treatment strategies. The PDE3A inhibitor anagrelide (ANA) profoundly suppresses the proliferation of high PDE3A-expressing AML cells while showing minimal impact on those with low PDE3A expression. Moreover, synergistic effect of ANA with other chemotherapeutic drugs in high PDE3A expression AML cells was observed. The ANA-idarubicin (IDA) combination showed the most remarkable synergistic effect among all ANA-chemotherapeutic drugs commonly used in AML cell line models. Our findings suggest that combined ANA and IDA treatment is an innovative and promising therapeutic strategy for AML patients with high PDE3A expression.
Project description:We present a functional characterisation of two members of the IDA-LIKE (IDL) peptide family in Arabidopsis thaliana, IDL6 and IDL7. They are processed both C- and N-terminally to produce active peptides. Structure analyses of synthesized IDL6 and IDL7 peptides indicate that they lack secondary structure elements. Localisation studies suggest that the peptides require a signal peptide and C-terminally processing to be correctly transported out of the cell. Treatment of plants with synthetic IDL6 and IDL7 peptides resulted in down-regulation of a broad range of stress-responsive genes, including early stress-responsive transcripts, dominated by a large group of ZINC FINGER PROTEINS (ZFPs), WRKYs and genes encoding calcium-dependent proteins. idl6 and idl7 mutants were more tolerant to salt, whereas the respective overexpression lines displayed increased sensitivity to both salt and oxidative stress. Taken together, our results suggest that the putative peptide ligands IDL6 and IDL7 act as suppressors of abiotic stress responses in Arabidopsis.
Project description:We present a functional characterisation of two members of the IDA-LIKE (IDL) peptide family in Arabidopsis thaliana, IDL6 and IDL7. They are processed both C- and N-terminally to produce active peptides. Structure analyses of synthesized IDL6 and IDL7 peptides indicate that they lack secondary structure elements. Localisation studies suggest that the peptides require a signal peptide and C-terminally processing to be correctly transported out of the cell. Treatment of plants with synthetic IDL6 and IDL7 peptides resulted in down-regulation of a broad range of stress-responsive genes, including early stress-responsive transcripts, dominated by a large group of ZINC FINGER PROTEINS (ZFPs), WRKYs and genes encoding calcium-dependent proteins. idl6 and idl7 mutants were more tolerant to salt, whereas the respective overexpression lines displayed increased sensitivity to both salt and oxidative stress. Taken together, our results suggest that the putative peptide ligands IDL6 and IDL7 act as suppressors of abiotic stress responses in Arabidopsis. Two weeks old seedlings were treated either with 100 nM IDL6 or IDL7 peptide (treated) or 100 nM mock peptide (control) and whole rosettes were harvested 2 hours after treatment. 4 biological replicaes per treatment. Two color microarray. Biological replicas are dye-swapped between slides.
Project description:Plants have the ability to shed organs that are no longer in use. In Arabidopsis thaliana abscission of floral organs involves cell wall remodeling and cell expansion prior to cell wall dissolution. IDA encodes a secreted peptide that signals through the leucine-rich repeat receptor-like kinases (LRR-RLKs) HAESA (HAE) (At4g28490) and HASEA-LIKE2 (HSL2) (At5g65710). Arabidopsis thaliana (ecotype Colombia-0) plants were kept in growth chambers with a 16/8 h (light/dark) photoperiod at 22 M-BM-0C, and 100 mE m-2 s-1 light intensity. 4 biological replicates were prepared from each sample, each containing abscission zone regions of siliques position 4 to 8 (when counting from the flowe at anthesis at the top of the inflorescence) from plants with at least 20 siliques. Differences in transcriptional responses were measured by comparing genes expression in abscission zones of ida-2 plants (SALK_133209) against abscission zones from control plants.