Project description:For the assessment of host response dynamics to SARS-CoV and SARS-CoV-2 infections in human airway epithelial cells at ambient temperature corresponding to the upper or lower respiratory tract. We performed a temporal transcriptome analysis on human airway epithelial cell (hAEC) cultures infected with SARS-CoV and SARS-CoV-2, as well as uninfected hAEC cultures, incubated either at 33°C or 37°C. hAEC cultures were harvested at 24, 48 72, 96 hpi and processed for Bulk RNA Barcoding and sequencing (BRB-seq), which allows a rapid and sensitive genome-wide transcriptomic analysis in a highly multiplexed manner. Transcriptome data was obtained from a total of 7 biological donors for pairwise comparisons of SARS-CoV or SARS-CoV-2 virus-infected to unexposed hAEC cultures at respective time points and temperatures.
Project description:To explore the relationship between SARS-CoV-2 infection in different time before operation and postoperative main complications (mortality, main pulmonary and cardiovascular complications) 30 days after operation; To determine the best timing of surgery after SARS-CoV-2 infection.
Project description:HAE cultures were infected with SARS-CoV, SARS-dORF6 or SARS-BatSRBD and were directly compared to A/CA/04/2009 H1N1 influenza-infected cultures. Cell samples were collected at various hours post-infection for analysis. Time Points = 0, 12, 24, 36, 48, 60, 72, 84 and 96 hrs post-infection for SARS-CoV, SARS-dORF6 and SARS-BatSRBD. Time Points = 0, 6, 12, 18, 24, 36 and 48 hrs post-infection for H1N1. Done in triplicate for RNA Triplicates are defined as 3 different wells, plated at the same time and using the same cell stock for all replicates. Time matched mocks done in triplicate from same cell stock as rest of samples. Culture medium (the same as what the virus stock is in) will be used for the mock infections. Infection was done at an MOI of 2 for SARS viruses and an MOI of 1 for H1N1.
Project description:HAE cultures were infected with SARS-CoV, SARS-dORF6 or SARS-BatSRBD and were directly compared to A/CA/04/2009 H1N1 influenza-infected cultures. Cell samples were collected at various hours post-infection for analysis. Time Points = 0, 12, 24, 36, 48, 60, 72, 84 and 96 hrs post-infection for SARS-CoV, SARS-dORF6 and SARS-BatSRBD. Time Points = 0, 6, 12, 18, 24, 36 and 48 hrs post-infection for H1N1. Done in triplicate or quadruplicate for RNA Triplicates/quadruplicates are defined as 3/4 different wells, plated at the same time and using the same cell stock for all replicates. Time matched mocks done in triplicate from same cell stock as rest of samples. Culture medium (the same as what the virus stock is in) will be used for the mock infections. Infection was done at an MOI of 2.
Project description:To better understand the biological pathways by which UV inactivated SARS-CoV-induced pulmonary eosinophilia occurs, we examined global transcriptional changes in macrophages from the lungs of mouse. Female BALB/c mice were used at 21 weeks of age. Mice were subcutaneously immunized with UV inactivated SARS-CoV (UV-V) or UV-V and Toll like receptor (TLR) ligands at 6 and 1 weeks prior to mouse-adapted SARS-CoV (n=6 per group). Mice were intranasally challenged with 1E+6 TCID50 in 30M-NM-<L. MEM was challenged in six mice as control infection. Mice were sacrificed and collected lungs at 1 days after challenge, then CD11b positive cells were isolated from the lungs of these mice. These cells were used for the analysis of microarray.
Project description:HAE cultures were infected with SARS-CoV, SARS-ddORF6 or SARS-BatSRBD and were directly compared to A/CA/04/2009 H1N1 influenza-infected cultures. Cell samples were collected at various hours post-infection for analysis. Time Points = 0, 12, 24, 36, 48, 60, 72, 84 and 96 hrs post-infection for SARS-CoV. Time Points = 0, 24, 48, 60, 72, 84 and 96 hrs post-infection forSARS-ddORF6 and SARS-BatSRBD. Time Points = 0, 6, 12, 18, 24, 36 and 48 hrs post-infection for H1N1. Done in triplicate/quadruplicate for RNA Triplicates/quadruplicates are defined as 3/4 different wells, plated at the same time and using the same cell stock for all replicates. Time matched mocks done in triplicate from same cell stock as rest of samples. Culture medium (the same as what the virus stock is in) will be used for the mock infections. Infection was done at an MOI of 2.
Project description:SARS-CoV and SARS-CoV-2, the causative agents of severe acute respiratory syndrome (SARS) and coronavirus disease 2019 (COVID-19), are genetically related positive-sense RNA viruses that may cause similar pathophysiology. Despite host could activate interferon responses upon coronaviral infection to suppress virus replication, both SARS-CoV and SARS-CoV-2 have evolved strategies to inhibit interferon response. Here, we constructed SARS-CoV and SARS-CoV-2 N proteins expressing cell lines (HEK293T-N and HEK293T-2N) and performed RNA sequencing analysis, showing that both SARS-CoV-2 and SARS-CoV N proteins could inhibit expression of early growth response gene 1 (EGR1) to suppress interferon response. Moreover, EGR1 could degrade N proteins of SARS-CoV and SARS-CoV-2 in a lysosome-dependent manner, and inhibit viral replication of SARS-CoV-2. Our findings revealed the important role of EGR1 in host innate immune response against SARS-CoV and SARS-CoV-2, which would contribute to understanding the pathogenesis of human coronaviruses and development of antiviral therapies. In addition, we demonstrated that both N proteins could upregulate expression of nervous development-related genes, which may be associated with the neurological symptoms of COVID-19 and SARS patients.
Project description:A recombinant SARS-CoV lacking the envelope (E) protein is attenuated in vivo. Here we report that E protein PDZ-binding motif (PBM), a domain involved in protein-protein interactions, is a major virulence determinant in vivo. Elimination of SARS-CoV E protein PBM by using reverse genetics led to attenuated viruses (SARS-CoV-mutPBM) and to a reduction in the deleterious exacerbate immune response triggered during infection with the parental virus (SARS-CoV-wt). Cellular protein syntenin bound E protein PBM during SARS-CoV infection. Syntenin activates p38 MAPK leading to overexpression of inflammatory cytokines, and we have shown that active p38 MAPK was reduced in lungs of mice infected with SARS-CoVs lacking E protein PBM (SARS-CoV-mutPBM) as compared with the parental virus (SARS-CoV-wt), leading to a decreased expression of inflammatory cytokines and to viral attenuation. Therefore, E protein PBM is a virulence factor that activates pathogenic immune response most likely by using syntenin as a mediator of p38 MAPK induced inflammation. Three biological replicates were independently hybridized (one channel per slide) for each sample type (SARS-CoV-wt, SARS-CoV-mutPBM, Mock). Slides were Sure Print G3 Agilent 8x60K Mouse (G4852A-028005)
Project description:The experiment aims at characterizing the immune responses elicited by the BNT162b2 vaccine against SARS-CoV-2, initially administered in a two dose regimen (second dose after three weeks followinf the first dose) In particular the transcriptional landscape of circulating T and B lymphocytes has been profiled longitudinnaly by scRNA-seq coupleD with CITE-seq of 19 cell surface markers to better classify T cells subpopulations, LIBRA-seq to assess the Spike-specificity of BCRs and and V(D)J seq to also track T and B cell clones dynamics. Eeach sample was profiled before vaccination (T0), 21 days after the first dose (T1), 2 months after the first dose (1 month after the second dose) (T2). The immune responses were characterized using PBMC from 3 SARS-CoV-2 experienced donors (experiencing SARS-Cov-2 at least 4 months before the first vaccinatin) and 2 SARS-CoV-2 unexperienced donors.
Project description:In this study, we tested the efficacy of five commercial probes panels at detecting SARS-CoV-2 genome including panels from Illumina, Twist Bioscience and Arbor Bioscience. To do so, we used 19 patient nasal swab samples broken down into 5 series of 4 samples of equivalent SARS-CoV-2 viral load (cycle threshold (CT): low CT means a high viral load – CT26, CT29, CT32, CT35 and CT36+).