Project description:Translocation renal cell carcinoma (tRCC) most commonly involves an ASPSCR1-TFE3 fusion, but molecular mechanisms remain elusive and animal models are lacking. Here, we show that human ASPSCR1-TFE3 driven by Pax8-Cre (a credentialed clear cell RCC driver) disrupted nephrogenesis and glomerular development, causing neonatal death, while the clear cell RCC failed driver, Sglt2-Cre, induced aggressive tRCC (as well as alveolar soft part sarcoma) with complete penetrance and short latency. However, in both contexts, ASPSCR1-TFE3 led to characteristic morphological cellular changes, loss of epithelial markers, and an epithelial-mesenchymal transition. Electron microscopy of tRCC tumors showed lysosome expansion, and functional studies revealed simultaneous activation of autophagy and mTORC1 pathways. Comparative genomic analyses encompassing an institutional human tRCC cohort (including a hitherto unreported SFPQ-TFEB fusion) and a variety of tumorgraft models (ASPSCR1-TFE3, PRCC-TFE3, SFPQ-TFE3, RBM10-TFE3, and MALAT1-TFEB) disclosed significant convergence in canonical pathways (cell cycle, lysosome, and mTORC1) and less established pathways such as Myc, E2F, and inflammation (IL-6/JAK/STAT3, interferon-γ, TLR signaling, systemic lupus, etc.). Therapeutic trials (adjusted for human drug exposures) showed antitumor activity of cabozantinib. Overall, this study provides insight into MiT/TFE-driven tumorigenesis, including the cell of origin, and characterizes diverse mouse models available for research.
Project description:Translocation renal cell carcinoma (tRCC) most commonly involves an ASPSCR1-TFE3 fusion, but molecular mechanisms remain elusive and animal models are lacking. Here, we show that human ASPSCR1-TFE3 driven by Pax8-Cre (a credentialed clear cell RCC driver) disrupted nephrogenesis and glomerular development, causing neonatal death, while the clear cell RCC failed driver, Sglt2-Cre, induced aggressive tRCC (as well as alveolar soft part sarcoma) with complete penetrance and short latency. However, in both contexts, ASPSCR1-TFE3 led to characteristic morphological cellular changes, loss of epithelial markers, and an epithelial-mesenchymal transition. Electron microscopy of tRCC tumors showed lysosome expansion, and functional studies revealed simultaneous activation of autophagy and mTORC1 pathways. Comparative genomic analyses encompassing an institutional human tRCC cohort (including a hitherto unreported SFPQ-TFEB fusion) and a variety of tumorgraft models (ASPSCR1-TFE3, PRCC-TFE3, SFPQ-TFE3, RBM10-TFE3, and MALAT1-TFEB) disclosed significant convergence in canonical pathways (cell cycle, lysosome, and mTORC1) and less established pathways such as Myc, E2F, and inflammation (IL-6/JAK/STAT3, interferon-γ, TLR signaling, systemic lupus, etc.). Therapeutic trials (adjusted for human drug exposures) showed antitumor activity of cabozantinib. Overall, this study provides insight into MiT/TFE-driven tumorigenesis, including the cell of origin, and characterizes diverse mouse models available for research
Project description:Renal cell carcinoma is a heterogenous cancer composed of an increasing number of unique subtypes each with their own cellular and tumor behavior. The study of hereditary renal cell carcinoma, which composes just 5% of all types of tumor cases, has allowed for the elucidation of subtype-specific tumorigenesis mechanisms that can also be applied to their sporadic counterparts. This review will focus on the major forms of hereditary renal cell carcinoma and the genetic alterations contributing to their tumorigenesis, including von Hippel Lindau syndrome, Hereditary Papillary Renal Cell Carcinoma, Succinate Dehydrogenase-Deficient Renal Cell Carcinoma, Hereditary Leiomyomatosis and Renal Cell Carcinoma, BRCA Associated Protein 1 Tumor Predisposition Syndrome, Tuberous Sclerosis, Birt-Hogg-Dubé Syndrome and Translocation RCC. The mechanisms for tumorigenesis described in this review are beginning to be exploited via the utilization of novel targets to treat renal cell carcinoma in a subtype-specific fashion.
Project description:Translocation renal cell carcinoma (tRCC) is a poorly characterized subtype of kidney cancer driven by MiT/TFE gene fusions. Here, we define the landmarks of tRCC through an integrative analysis of 152 patients with tRCC identified across genomic, clinical trial, and retrospective cohorts. Most tRCCs harbor few somatic alterations apart from MiT/TFE fusions and homozygous deletions at chromosome 9p21.3 (19.2% of cases). Transcriptionally, tRCCs display a heightened NRF2-driven antioxidant response that is associated with resistance to targeted therapies. Consistently, we find that outcomes for patients with tRCC treated with vascular endothelial growth factor receptor inhibitors (VEGFR-TKIs) are worse than those treated with immune checkpoint inhibitors (ICI). Using multiparametric immunofluorescence, we find that the tumors are infiltrated with CD8+ T cells, though the T cells harbor an exhaustion immunophenotype distinct from that of clear cell RCC. Our findings comprehensively define the clinical and molecular features of tRCC and may inspire new therapeutic hypotheses.
Project description:Translocation renal cell carcinoma (tRCC) is a poorly-characterized subtype of kidney cancer driven by MiT/TFE gene fusions. Here, we define the landmarks of tRCC through an integrative analysis of 152 patients with tRCC identified across multiple genomic, clinical trial, and retrospective cohorts. Most tRCCs harbor few somatic alterations apart from MiT/TFE fusions and homozygous deletions at chromosome 9p21.3 (19.2% of cases). Transcriptionally, tRCCs display a heightened NRF2-driven antioxidant response that is associated with resistance to many targeted therapies. Consistently, we find that outcomes for patients with tRCC treated with vascular endothelial growth factor receptor inhibitors (VEGFR-TKI) are worse than those treated with immune checkpoint inhibition (ICI). Multiparametric immunofluorescence confirmed the presence of CD8+ tumor-infiltrating T cells compatible with a clinical benefit from ICI and revealed an exhaustion immunophenotype distinct from that of clear cell RCC. Our findings comprehensively define the clinical and molecular features of tRCC and may inspire new therapeutic hypotheses.
Project description:BackgroundMammals have wide variations in testicular position, with scrotal testes in some species and ascrotal testes in others. Although cryptorchidism is hazardous to human health, some mammalian taxa are natural cryptorchids. However, the evolution of testicular position and the molecular mechanisms underlying the maintenance of health, including reproductive health, in ascrotal mammals are not clear.ResultsIn the present study, comparative genomics and evolutionary analyses revealed that genes associated with the extracellular matrix and muscle, contributing to the development of the gubernaculum, were involved in the evolution of testicular position in mammals. Moreover, genes related to testicular position were significantly associated with spermatogenesis and sperm fertility. These genes showed rapid evolution and the signature of positive selection, with specific substitutions in ascrotal mammals. Genes associated with testicular position were significantly enriched in functions and pathways related to cancer, DNA repair, DNA replication, and autophagy.ConclusionsOur results revealed that alterations in gubernaculum development contributed to the evolution of testicular position in mammals and provided the first support for two hypotheses for variation in testicular position in mammals, the "cooling hypothesis", which proposes that the scrotum provides a cool environment for acutely heat-sensitive sperm and the "training hypothesis", which proposes that the scrotum develops the sperm by exposing them to an exterior environment. Further, we identified cancer resistance and DNA repair as potential protective mechanisms in natural cryptorchids. These findings provide general insights into cryptorchidism and have implications for health and infertility both in humans and domestic mammals.
Project description:To study the clinicopathological and genomic characteristics of Xp11.2 translocation renal cell carcinoma (Xp11.2 RCC) in adults, we analyzed 9 Xp11.2 RCCs, confirmed by transcription factor E3 (TFE3) immunohistochemistry, in patients aged ≥20 years. TFE3 expression was also determined in 12 cases of alveolar soft part sarcoma (ASPS) served as a positive control. Comparative genomic hybridization (CGH) was used to investigate genomic imbalances in all Xp11.2 RCC cases. Most of our Xp11.2 RCC patients (5/9) presented with TNM stages 3-4, and 6 patients died 10 months to 7 years after their operation. Histologically, Xp11.2 RCC was composed of a mixed papillary nested/alveolar growth pattern (8/9). Immunostaining showed that all Xp11.2 RCC and ASPS cases had strong TFE3 expression and high positive ratios for p53 and vimentin. However, there were significant differences in the expression of AMACR (p<0.001), AE1/AE3 (p=0.002), and CD10 (p=0.024) between the 2 diseases. CGH profiles showed chromosomal imbalances in all 9 Xp11.2 RCC cases; gains were observed in chromosomes Xp11 (6/9), 7q20-25, 12q25-31 (5/9), 7p16-24 (4/9), 8p12-13, 8q20-21, 16q20-22, 17q25-26, 20q22-23 (4/9), and losses occurred frequently on chromosomes 3p12-16, 9q31-32, 14q22-24 (4/9). Our Conclusions show Xp11.2 RCC that occur in adults may be aggressive cancers, the expressions of AMACR, CD10, AE1/AE3 are helpful in the differential diagnosis between Xp11.2 RCC and ASPS, and CGH assay is a useful complementary method for confirming the diagnosis of Xp11.2 RCC.
Project description:PurposeTranslocation renal cell carcinoma (tRCC) is a rare subtype of kidney cancer involving the TFEB/TFE3 genes. We aimed to investigate the genomic and epigenetic features of this entity.Experimental designCytogenomic analysis was conducted with 250K single-nucleotide polymorphism microarrays on 16 tumor specimens and four cell lines. LINE-1 methylation, a surrogate marker of DNA methylation, was conducted on 27 cases using pyrosequencing.ResultstRCC showed cytogenomic heterogeneity, with 31.2% and 18.7% of cases presenting similarities with clear-cell and papillary RCC profiles, respectively. The most common alteration was a 17q gain in seven tumors (44%), followed by a 9p loss in six cases (37%). Less frequent were losses of 3p and 17p in five cases (31%) each. Patients with 17q gain were older (P=0.0006), displayed more genetic alterations (P<0.003), and had a worse outcome (P=0.002) than patients without it. Analysis comparing gene-expression profiling of a subset of tumors bearing 17q gain and those without suggest large-scale dosage effects and TP53 haploinsufficiency without any somatic TP53 mutation identified. Cell line-based cytogenetic studies revealed that 17q gain can be related to isochromosome 17 and/or to multiple translocations occurring around 17q breakpoints. Finally, LINE-1 methylation was lower in tRCC tumors from adults compared with tumors from young patients (71.1% vs. 76.7%; P=0.02).ConclusionsOur results reveal genomic heterogeneity of tRCC with similarities to other renal tumor subtypes and raise important questions about the role of TFEB/TFE3 translocations and other chromosomal imbalances in tRCC biology.
Project description:Xp11.2 translocation renal cell carcinoma (Xp11 tRCC) is a rare sporadic pediatric kidney cancer caused by constitutively active TFE3 fusion proteins. Tumors in patients with Xp11 tRCC tend to recur and undergo frequent metastasis, in part due to lack of methods available to detect early-stage disease. Here we generated transgenic (Tg) mice overexpressing the human PRCC-TFE3 fusion gene in renal tubular epithelial cells, as an Xp11 tRCC mouse model. At 20 weeks of age, mice showed no histological abnormalities in kidney but by 40 weeks showed Xp11 tRCC development and related morphological and histological changes. MicroRNA (miR)-204-5p levels in urinary exosomes of 40-week-old Tg mice showing tRCC were significantly elevated compared with levels in control mice. MicroRNA-204-5p expression also significantly increased in primary renal cell carcinoma cell lines established both from Tg mouse tumors and from tumor tissue from 2 Xp11 tRCC patients. All of these lines secreted miR-204-5p-containing exosomes. Notably, we also observed increased miR-204-5p levels in urinary exosomes in 20-week-old renal PRCC-TFE3 Tg mice prior to tRCC development, and those levels were equivalent to those in 40-week-old Tg mice, suggesting that miR-204-5p increases follow expression of constitutively active TFE3 fusion proteins in renal tubular epithelial cells prior to overt tRCC development. Finally, we confirmed that miR-204-5p expression significantly increases in noncancerous human kidney cells after overexpression of a PRCC-TFE3 fusion gene. These findings suggest that miR-204-5p in urinary exosomes could be a useful biomarker for early diagnosis of patients with Xp11 tRCC.