Project description:This experiment aims on the identification of serine hydrolases from a complex thermophile community that live in a hot vent in Kamchatka Peninsula based on in vivo labelling with FP-alkyne directly in the hot spring and subsequent analysis using metagenomics/metaproteomics. To this end, sediment samples were collected and treated using the following three conditions. DMSO- treated control FP-alkyne labelled Samples for each condition were prepared in triplicate, resulting a total number of 6 samples per spring. Labelling was performed using 4 µM of the probe FP-alkyne and incubation for 2 h in the hot spring.
2024-06-03 | PXD025833 | Pride
Project description:16S metagenomics to understand bacterial diversity in Hot Spring
Project description:Microorganisms constitute a reservoir of enzymes involved in environmental carbon cycling and degradation of plant polysaccharides since they produce a vast variety of glycoside hydrolases. The CAZyChip was developed to allow a rapid characterization at transcriptomic level of these GHs and to identify enzymes acting on hydrolysis of polysaccharide or glycans. This DNA biochip contains the signature of 55,220 bacterial GHs available in the CAZy database. Probes were designed using two softwares and microarrays were directly synthetized using the in situ ink-jet technology. CAZyChip specificity and reproducibility was validated by hybridization of known GHs RNA extracted from recombinant E. coli strains, previously characterized by a functional metagenomic approach. The GHs arsenal was also studied in bioprocess conditions using rumen derived microbiota. The CAZyChip appears to be a user friendly tool for profiling the expression of a large variety of GHs. It can be used to study temporal variations of functional diversity, thereby facilitating the identification of new efficient candidates for enzymatic conversions from various ecosystems.