Project description:Crohn's Disease (CD) is a chronic inflammatory disease of the intestinal tract. We performed a whole-genome transcriptional analysis using colonic biopsies from CD patients before and after anti-TNF-α therapy. Involved colonic samples from Crohn's disease patients and healthy colonic samples from non-inflammatory controls were collected for RNA extraction and hybridization on Affymetrix microarrays. Inclusion criteria for CD patients were: age between 18 and 70, diagnosis of CD established at least 4 months before inclusion and exclusion of concomitant infection. Active disease was defined by endoscopic and clinical score: endoscopic active disease was defined as a CD endoscopic index of severity (CDEIS) of 5 or more and the presence of large ulcers (> 0.5 cm diameter) in at least one of the explored segments. Clinical activity was defined as a CD activity index (CDAI) above 150. Finally, a total of 39 biopsies were analyzed: 17 healthy controls, 10 active CD without anti-TNF therapy, 5 active CD with anti-TNF therapy (non-responders) and 7 inactive CD with anti-TNF therapy (responders).
Project description:Leber2015 - Mucosal immunity and gut
microbiome interaction during C. difficile infection
This model is described in the article:
Systems Modeling of
Interactions between Mucosal Immunity and the Gut Microbiome
during Clostridium difficile Infection.
Leber A, Viladomiu M, Hontecillas R,
Abedi V, Philipson C, Hoops S, Howard B, Bassaganya-Riera
J.
PLoS ONE 2015; 10(7): e0134849
Abstract:
Clostridium difficile infections are associated with the use
of broad-spectrum antibiotics and result in an exuberant
inflammatory response, leading to nosocomial diarrhea, colitis
and even death. To better understand the dynamics of mucosal
immunity during C. difficile infection from initiation through
expansion to resolution, we built a computational model of the
mucosal immune response to the bacterium. The model was
calibrated using data from a mouse model of C. difficile
infection. The model demonstrates a crucial role of T helper 17
(Th17) effector responses in the colonic lamina propria and
luminal commensal bacteria populations in the clearance of C.
difficile and colonic pathology, whereas regulatory T (Treg)
cells responses are associated with the recovery phase. In
addition, the production of anti-microbial peptides by inflamed
epithelial cells and activated neutrophils in response to C.
difficile infection inhibit the re-growth of beneficial
commensal bacterial species. Computational simulations suggest
that the removal of neutrophil and epithelial cell derived
anti-microbial inhibitions, separately and together, on
commensal bacterial regrowth promote recovery and minimize
colonic inflammatory pathology. Simulation results predict a
decrease in colonic inflammatory markers, such as neutrophilic
influx and Th17 cells in the colonic lamina propria, and length
of infection with accelerated commensal bacteria re-growth
through altered anti-microbial inhibition. Computational
modeling provides novel insights on the therapeutic value of
repopulating the colonic microbiome and inducing regulatory
mucosal immune responses during C. difficile infection. Thus,
modeling mucosal immunity-gut microbiota interactions has the
potential to guide the development of targeted fecal
transplantation therapies in the context of precision medicine
interventions.
This model is hosted on
BioModels Database
and identified by:
BIOMD0000000583.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Chronic inflammation and gut microbiota dysbiosis are risk factors for colorectal cancer. In clinical practice, inflammatory bowel disease (IBD) patients have a greatly increased risk of developing colitis associated colorectal cancer (CAC). However, the basis underlying the initiation of CAC remains to be explored. Systematic filtration through existing genome-wide association study (GWAS) and conditional deletion of Zfp90 in CAC mice model indicated that Zfp90 was a putative oncogene in CAC development. Strikingly, depletion of gut microbiota eliminated the tumorigenic effect of Zfp90 in CAC mice model. Moreover, fecal microbiota transplantation demonstrated Zfp90 promoted CAC depending on gut microbiota. Combining 16s rDNA sequencing in feces specimens from CAC mice model, we speculated that Prevotella copri-defined microbiota might mediate the oncogenic role of Zfp90 in the development of CAC. Mechanistic studies revealed Zfp90 accelerated CAC development through Tlr4-Pi3k-Akt-Nf-κb pathway. Our findings elucidated the crucial role of Zfp90-microbiota-Nf-κb axis in creating a tumor-promoting environment and suggested therapeutic targets for CAC prevention and treatment.
Project description:Objective: Otitis media is known to alter expression of cytokine and other genes in the mouse middle ear and inner ear. However, whole mouse genome studies of gene expression in otitis media have not previously been undertaken. Ninety-nine percent of mouse genes are shared in the human, so these studies are relevant to the human condition. Methods: To assess inflammation-driven processes in the mouse ear, gene chip analyses were conducted on mice treated with trans-tympanic heat-killed Hemophilus influenza using untreated mice as controls. Middle and inner ear tissues were separately harvested at 6 hours, RNA extracted, and samples for each treatment processed on the Affymetrix 430 2.0 Gene Chip for expression of its 34,000 genes. Results: Statistical analysis of gene expression compared to control mice showed significant alteration of gene expression in 2,355 genes, 11% of the genes tested and 8% of the mouse genome. Significant middle and inner ear upregulation (fold change >1.5, p<0.05) was seen in 1,081 and 599 genes respectively. Significant middle and inner ear downregulation (fold change <0.67, p<0.05) was seen in 978 and 287 genes respectively. While otitis media is widely believed to be an exclusively middle ear process with little impact on the inner ear, the inner ear changes noted in this study were numerous and discrete from the middle ear responses. This suggests that the inner ear does indeed respond to otitis media and that its response is a distinctive process. Numerous new genes, previously not studied, are found to be affected by inflammation in the ear. Conclusion: Whole genome analysis via gene chip allows simultaneous examination of expression of hundreds of gene families influenced by inflammation in the middle ear. Discovery of new gene families affected by inflammation may lead to new approaches to the study and treatment of otitis media.
Project description:Objective: Otitis media is known to alter expression of cytokine and other genes in the mouse middle ear and inner ear. However, whole mouse genome studies of gene expression in otitis media have not previously been undertaken. Ninety-nine percent of mouse genes are shared in the human, so these studies are relevant to the human condition. Methods: To assess inflammation-driven processes in the mouse ear, gene chip analyses were conducted on mice treated with trans-tympanic heat-killed Hemophilus influenza using untreated mice as controls. Middle and inner ear tissues were separately harvested at 6 hours, RNA extracted, and samples for each treatment processed on the Affymetrix 430 2.0 Gene Chip for expression of its 34,000 genes. Results: Statistical analysis of gene expression compared to control mice showed significant alteration of gene expression in 2,355 genes, 11% of the genes tested and 8% of the mouse genome. Significant middle and inner ear upregulation (fold change >1.5, p<0.05) was seen in 1,081 and 599 genes respectively. Significant middle and inner ear downregulation (fold change <0.67, p<0.05) was seen in 978 and 287 genes respectively. While otitis media is widely believed to be an exclusively middle ear process with little impact on the inner ear, the inner ear changes noted in this study were numerous and discrete from the middle ear responses. This suggests that the inner ear does indeed respond to otitis media and that its response is a distinctive process. Numerous new genes, previously not studied, are found to be affected by inflammation in the ear. Conclusion: Whole genome analysis via gene chip allows simultaneous examination of expression of hundreds of gene families influenced by inflammation in the middle ear. Discovery of new gene families affected by inflammation may lead to new approaches to the study and treatment of otitis media.