Project description:Quorum sensing system-regulated protein affect the spoilage potential of co-culturing Acinetobacter johnsonii and Pseudomonas fluorescens from spoilage bigeye tuna (Thunnus obesus) by proteomics
Project description:Over 50% of the total bigeye tuna (BET) landed in the Western Central Pacific Ocean is caught incidentally in the purse seine fishery and sold for canning at prices less than US$2/kg. The remainder is landed in longline fisheries directed at BET and sold as fresh or frozen tuna at prices greater than US$10/kg. The combined fishing mortality by all gears will soon reduce the BET biomass in the Pacific Ocean to less than that capable of producing maximum sustainable yield. Closure of the high-seas enclaves in 2009 was hailed as a conservation measure, but was not scientifically evaluated before implementation and appears to have had no beneficial effect on the BET stock. A spatially explicit age-structured ecosystem model, SEAPODYM, is used to simulate alternative area-based fishery management policies to conserve bigeye tuna in the Western Central Pacific Ocean. Closing the high-seas enclaves to purse seine fishing has negligible effect on the BET biomass. Fishery management policies that control mortality on both juveniles and adults, through prohibition of fish aggregation devices in the purse seine fishery and restrictions on longline fishing in spawning areas, are the most efficient conservation policies. Large-scale benefits from bigeye conservation measures will become apparent only in the 2030s, assuming timely implementation and minimal effects of climate change.
Project description:Recent developments in the field of genomics have provided new and powerful insights into population structure and dynamics that are essential for the conservation of biological diversity. As a commercially highly valuable species, the yellowfin tuna (Thunnus albacares) is intensely exploited throughout its distribution in tropical oceans around the world, and is currently classified as near threatened. However, conservation efforts for this species have so far been hampered by limited knowledge of its population structure, due to incongruent results of previous investigations. Here, we use whole-genome sequencing in concert with a draft genome assembly to decipher the global population structure of the yellowfin tuna, and to investigate its demographic history. We detect significant differentiation of Atlantic and Indo-Pacific yellowfin tuna populations as well as the possibility of a third diverged yellowfin tuna group in the Arabian Sea. We further observe evidence for past population expansion as well as asymmetric gene flow from the Indo-Pacific to the Atlantic.
Project description:Bigeye tuna (Thunnus obesus) is an economically valuable ocean fish species. It is susceptible to contamination during storage and transportation. Having proper transportation packaging and stable temperature during transportation are critical to prevent quality deterioration. However, the influence of packaging on retaining freshness in transit remains unknown. Here, the impact of different transportation packaging on the quality and microbiological variation of bigeye tuna during the logistics process was investigated by measuring physical-chemical indexes and microbial diversity. It turned out that aluminum foil paper (AFP) group had minimum temperature fluctuation, exhibited preferable water retaining capacity and color protection effect. AFP packaging could efficiently prevent TVB-N increase and microbial growth. After 40 h, the TVB-N value was 21.28 mg/100 g and microbial total plate count was 3.53 lg CFU/g, which was within the acceptable range. Temperature fluctuations and packaging materials had a major effect on the microbial community structure of bigeye tuna. Chitinophagaceae, Acinetobacter, and Knoellia were dominant in the AFP group, while Pseudomonas, Acinetobacter, and Macrococcus were dominant in the expanded polystyrene foam (EPSF) and European logistics (EUL) groups. AFP packaging could effectively slow down the growth and reproduction of Pseudomonas, restraining the growth of microorganisms and preserve the quality of bigeye tuna. This study provides insights into understanding the effects of packaging material on maintaining quality during logistics transportation.
Project description:The largest of the tuna species, Atlantic bluefin tuna, Thunnus thynnus (Linnaeus, 1758), inhabits the North Atlantic Ocean and the Mediterranean Sea and is considered to be an endangered species, largely through overfishing. Thus, the development of aquaculture practices independent of wild resources can provide an important contribution towards ensuring security and sustainability of this species in the longer-term. In order to provide a resource for ongoing studies, we have used 454 pyrosequencing technology to sequence a mixed-tissue normalized cDNA library, derived from adult individuals. Transcript sequences were used to develop a novel 15K Agilent oligo microarray for T. thynnus and comparative tissue gene expression profiles were inferred for gill, heart, liver, ovaries and testes.