Project description:Screening has revealed that modern-day feeds used in Atlantic salmon aquaculture might contain trace amounts of agricultural pesticides. To reach slaughter size, salmon are produced in open net pens in the sea. Unconsumed feed pellets and undigested feces deposited beneath the net pens represent a source of contamination for marine organisms. To examine the impacts of long-term and continuous dietary exposure to an organophosphorus pesticide (OP) found in Atlantic salmon feed, we fed juvenile Atlantic cod (Gadus morhua), an abundant species around North Atlantic fish farms, three concentrations (0.5, 4.2 and 23.2 mg/kg) of chlorpyrifos-methyl (CPM) for 30 days. Endpoints included liver and bile bioaccumulation, liver transcriptomics and metabolomics, as well as plasma cholinesterase activity, cortisol, liver 7-ethoxyresor-ufin-O-deethylase (EROD) activity and hypoxia tolerance. The results show that Atlantic cod can accumulate relatively high levels of CPM in the liver after continuous exposure, which is then metabolized and excreted via the bile. All three exposure concentrations led to significant inhibition of plasma cholinesterase activity, the primary target of CPM. Transcriptomics profiling pointed to effects on cholesterol and steroid biosynthesis. Metabolite profiling revealed that CPM induced responses reflecting detoxification by glutathione-S-transferase, inhibition of monoacylglycerol lipase, potential inhibition of carboxylesterase, and increased demand for ATP, followed by secondary inflammatory responses. A gradual hypoxia challenge test showed that all groups of exposed fish were less tolerant to low oxygen saturation than the controls. In conclusion, this study suggests that wild fish continuously feeding on leftover pellets near fish farms over time may be vulnerable to OPs.
Project description:Identification of the specific WalR (YycF) binding regions on the B. subtilis chromosome during exponential and phosphate starvation growth phases. The data serves to extend the WalRK regulon in Bacillus subtilis and its role in cell wall metabolism, as well as implying a role in several other cellular processes.
Project description:Resistance to agricultural fungicides in the field has created a need for discovering fungicides with new modes of action. DNA microarrays, because they provide information on expression of many genes simultaneously, could help to identify the modes of action. To begin an expression pattern database for agricultural fungicides, transcriptional patterns of Saccharomyces cerevisiae strain S288C genes were analysed following 2-h treatments with I50 concentrations of ergosterol biosynthesis inhibitors commonly used against plant pathogenic fungi. Eight fungicides, representing three classes of ergosterol biosynthesis inhibitors, were tested. To compare gene expression in response to a fungicide with a completely different mode of action, a putative methionine biosynthesis inhibitor (MBI) was also tested. Expression patterns of ergosterol biosynthetic genes supported the roles of Class I and Class II inhibitors in affecting ergosterol biosynthesis, confirmed that the putative MBI did not affect ergosterol biosynthesis, and strongly suggested that in yeast, the Class III inhibitor did not affect ergosterol biosynthesis. The MBI affected transcription of three genes involved in methionine metabolism, whereas there were essentially no effects of ergosterol synthesis inhibitors on methionine metabolism genes. There were no consistent patterns in other up- or downregulated genes between fungicides. These results suggest that inspection of gene response patterns within a given pathway may serve as a useful first step in identifying possible modes of action of fungicides. agricultural sterol biosynthesis inhibitor fungicides. Keywords = agriculture Keywords = ergosterol Keywords = methionine Keywords = fungicide Keywords = Saccharomyces cerevisiae S288C Keywords = biosynthesis
Project description:The spread of antibiotic resistance genes (ARG) into agricultural soils, products, and foods severely limits the use of organic fertilizers in agriculture. In this study, experimental land plots were fertilized, sown, and harvested for two consecutive agricultural cycles using either mineral or three types of organic fertilizers: sewage sludge, pig slurry, or composted organic fraction of municipal solid waste. The analysis of the relative abundances of more than 200,000 ASV (Amplicon Sequence Variants) allowed the identification of a small, but significant (<10%) overlap between soil and fertilizer microbiomes, particularly in soils sampled the same day of the harvest (post-harvest soils). Loads of clinically relevant ARG were significantly higher (up to 100 fold) in fertilized soils relative to the initial soil. The highest increases corresponded to post-harvest soils treated with organic fertilizers, and they correlated with the extend of the contribution of fertilizers to the soil microbiome. Edible products (lettuce and radish) showed low, but measurable loads of ARG (sul1 for lettuces and radish, tetM for lettuces). These loads were minimal in mineral fertilized soils, and strongly dependent on the type of fertilizer. We concluded that at least part of the observed increase on ARG loads in soils and foodstuffs were actual contributions from the fertilizer microbiomes. Thus, we propose that adequate waste management and good pharmacological and veterinarian practices may significantly reduce the potential health risk posed by the presence of ARG in agricultural soils and plant products.
Project description:During thermotolerance development, B. subtilis cells can be primed by a short mild heat shock to survive a subsequent severe, otherwise lethal, heat stress. We wanted to assess the influence of transcriptional regulation during thermotolerance development in B. subtilis. We prepared total RNA of four differently treated samples of B. subtilis cells. For this purpose, exponential B. subtilis cells grown at 37 °C were divided and exposed for additional 15 min to temperatures of 37 °C, 48 °C, 53 °C or 15 min 48 °C followed by 15 min at 53 °C.
Project description:Resistance to agricultural fungicides in the field has created a need for discovering fungicides with new modes of action. DNA microarrays, because they provide information on expression of many genes simultaneously, could help to identify the modes of action. To begin an expression pattern database for agricultural fungicides, transcriptional patterns of Saccharomyces cerevisiae strain S288C genes were analysed following 2-h treatments with I50 concentrations of ergosterol biosynthesis inhibitors commonly used against plant pathogenic fungi. Eight fungicides, representing three classes of ergosterol biosynthesis inhibitors, were tested. To compare gene expression in response to a fungicide with a completely different mode of action, a putative methionine biosynthesis inhibitor (MBI) was also tested. Expression patterns of ergosterol biosynthetic genes supported the roles of Class I and Class II inhibitors in affecting ergosterol biosynthesis, confirmed that the putative MBI did not affect ergosterol biosynthesis, and strongly suggested that in yeast, the Class III inhibitor did not affect ergosterol biosynthesis. The MBI affected transcription of three genes involved in methionine metabolism, whereas there were essentially no effects of ergosterol synthesis inhibitors on methionine metabolism genes. There were no consistent patterns in other up- or downregulated genes between fungicides. These results suggest that inspection of gene response patterns within a given pathway may serve as a useful first step in identifying possible modes of action of fungicides. agricultural sterol biosynthesis inhibitor fungicides. Keywords = agriculture Keywords = ergosterol Keywords = methionine Keywords = fungicide Keywords = Saccharomyces cerevisiae S288C Keywords = biosynthesis
Project description:Using bottom-up oligonucleotide LC-MS/MS in combination with stable isotope labeling, chemical derivatization, and bioinformatics variable modification search, a total of 25 modifications were mapped to the sequences of 16S and 23S RNA in B. subtilis. 10 modification sites, previously identified by others using alternative methods were independently confirmed using targeted MS/MS data analysis. Modification types, namely base/ribose methylation, pseudouridines and dihydrouridine, and modification positions are fully consistent with prior experimental evidence and agree well with modifications that were annotated in E. coli and other bacteria species.
Project description:the original data of black soldier fly larva mass fermentation with Bacillus subtilis and Aspergillus niger, analyzed by Chinese biotechnology company, published by Chinese Academy of Tropical Agricultural Sciences Environment and Plant Protection Institute for research only.