Project description:The objective of the study was to analyze the changes in proteomics that occur in saliva in acute abdominal disease (AAD) by proteomics in order to identify new proteins that could allow gaining knowledge about the physiopathological changes that can occur in this fluid and identify possible new biomarkers of acute abdominal disease. Samples from two groups of horses were analyzed by TMT proteomic analysis: - Diseased horses (n=7; 4 stallions and 3 mares; mean age = 8 years (range 1-18); Andalusians (n=5) and crossbred (n=2)). Presence of AAD was diagnosed based on history, physical examination (abdominal auscultation, rectal examination and nasogastric intubation) and additional diagnostic tests incl. complete blood count (CBC), serum biochemistry profile, abdominal ultrasound and or abdominocentesis. Final diagnoses were impaction of ascending colon (n=3), right dorsal colon displacement (n=2) and spasmodic colon (n=2). - Healthy horses (n=6, 3 geldings, 2 stallions and 1 mare; mean age = 12 years (range 4-15); Andalusians (n=4) and crossbred (n=2)). Horses were found healthy based on history, clinical examination, CBC and serum biochemistry profile. These procedures were approved by the ethical committee of the University of Murcia (CEEA 288/2017).
Project description:Transposable elements (TEs) are genomic parasites that constitute the most abundant portions of higher plant genomes. However, whether TE selection occurred during crop domestication remains unknown. HUO is active under normal growth conditions, present at low copy numbers, inserts preferentially into regions capable of transcription, but absent in almost all modern varieties, indicating its removal during rice domestication and modern rice breeding. HUO triggers genomic immunity and dramatically alters genome-wide methylation levels and small RNA biogenesis, as well as global gene expression. Its presence specifically affects agronomic traits by decreasing yield performance and disease resistance but enhancing salt tolerance, which mechanistically explains its domestication removal. Thus, our study reveals a unique retrotransposon as a negative target for maintaining genetic and epigenetic stability during crop domestication and selection.
Project description:Transposable elements (TEs) are genomic parasites that constitute the most abundant portions of higher plant genomes. However, whether TE selection occurred during crop domestication remains unknown. HUO is active under normal growth conditions, present at low copy numbers, inserts preferentially into regions capable of transcription, but absent in almost all modern varieties, indicating its removal during rice domestication and modern rice breeding. HUO triggers genomic immunity and dramatically alters genome-wide methylation levels and small RNA biogenesis, as well as global gene expression. Its presence specifically affects agronomic traits by decreasing yield performance and disease resistance but enhancing salt tolerance, which mechanistically explains its domestication removal. Thus, our study reveals a unique retrotransposon as a negative target for maintaining genetic and epigenetic stability during crop domestication and selection.
Project description:Transposable elements (TEs) are genomic parasites that constitute the most abundant portions of higher plant genomes. However, whether TE selection occurred during crop domestication remains unknown. HUO is active under normal growth conditions, present at low copy numbers, inserts preferentially into regions capable of transcription, but absent in almost all modern varieties, indicating its removal during rice domestication and modern rice breeding. HUO triggers genomic immunity and dramatically alters genome-wide methylation levels and small RNA biogenesis, as well as global gene expression. Its presence specifically affects agronomic traits by decreasing yield performance and disease resistance but enhancing salt tolerance, which mechanistically explains its domestication removal. Thus, our study reveals a unique retrotransposon as a negative target for maintaining genetic and epigenetic stability during crop domestication and selection.
Project description:Transposable elements (TEs) are genomic parasites that constitute the most abundant portions of higher plant genomes. However, whether TE selection occurred during crop domestication remains unknown. HUO is active under normal growth conditions, present at low copy numbers, inserts preferentially into regions capable of transcription, but absent in almost all modern varieties, indicating its removal during rice domestication and modern rice breeding. HUO triggers genomic immunity and dramatically alters genome-wide methylation levels and small RNA biogenesis, as well as global gene expression. Its presence specifically affects agronomic traits by decreasing yield performance and disease resistance but enhancing salt tolerance, which mechanistically explains its domestication removal. Thus, our study reveals a unique retrotransposon as a negative target for maintaining genetic and epigenetic stability during crop domestication and selection.
Project description:Myofibrillar myopathy (MFM) in horses is a late onset disease that affects performance and athleticism. It is characterized by myofibrillar disarray and protein aggregation with no known cause. The objective of this study was to elucidate the molecular drivers of MFM in Warmblood (WB) horses by proteomic profiling (5 MFM WB, 4 non-MFM WB) of gluteal muscle. MFM horses used in this study had a chronic history of poor performance and exercise intolerance as well as accumulation of desmin aggregates in > 4 myofibers per muscle sample. The Equine Neuromuscular Diagnostic Laboratory database at Michigan State University was queried to identify WB horses with snap frozen gluteus medius biopsies available for analysis. Non-MFM control horses were defined as horses with no history of exercise intolerance and no evidence of desmin accumulation or other histopathology in muscle biopsies. Muscle biopsy samples were obtained at rest from horses that had not undertaken strenuous exercise in the preceding 48 hours.
Project description:Many crop species have polyploid genomes that are unlikely to be sequenced to a high standard in the near future, representing a barrier to genomics-based breeding. As an exemplar, we sequenced the leaf transcriptome to analyse both sequence variation1 and transcript abundance across a mapping population of oilseed rape (Brassica napus), together with representatives of ancestors of the parents of the population. Twin SNP linkage maps were constructed, comprising 23,037 markers in all. These were used to analyse the genome for alignment to that of a related species, Arabidopsis thaliana, and to genome sequence assemblies of the progenitor species of B. napus. Methods were developed that enabled us to detect genome rearrangements and track inheritance of genomic segments, including the outcome of an inter-specific cross. This transformative advance, enabling economical high-resolution dissection of the genomes of most, if not all, crop species, will enable us to understand the genetic consequences of breeding and domestication, and will underpin the development of efficient predictive breeding strategies.