Project description:Older individuals subjected to complete bed rest for 10 days were randomized to a complete nutritional supplement with or without hydroxymethyl butyrate (HMB). Muscle biopsies from the vastus lateralis were obtained immediately prior and at the conclusion of the bed rest. RNA-sequencing was performed to determine the gene expression changes associated with bed rest. Marked decrease in the expression of genes associated with mitochondrial energy metabolism including fatty acid oxidation, TCA cycle and the electron transport chain was observed with bed rest. These effects were partly mitigated in the subjects provided the nutritional supplement with HMB.
Project description:Anesthetic gases elicit organ protection in patients undergoing coronary artery bypass graft (CABG) surgery. This study aimed at identifying myocardial transcriptional phenotypes and anesthetic-induced changes in gene expression to predict cardiovascular biomarkers and cardiac function after off-pump CABG. Keywords: cardiac surgery, anesthetics
2007-01-01 | GSE4386 | GEO
Project description:Identification gut microbiota of piglets which supplement multi-strain probiotics
Project description:FastQ files from 16S sequencing of fecal samples from pancreatic cancer xenografted mice not treated (CTRL) and treated with chemotherapy (GEM+nab-PTX), probiotics (PRO) and chemotherapy + probiotics (GEM+nab-PTX+PRO)
Project description:Traumatic brain injury (TBI) is one of the leading causes of death worldwide. Due to complex etiology, there are currently no effective treatments for TBI, and trauma survivors suffer from a variety of long-lasting health consequences. One of the pathological manifestations of TBI is neuroinflammation, which is thought to delay tissue repair and patient recovery. With nutritional support recently emerging as a vital step in improving TBI patients’ outcomes, we sought to evaluate the potential therapeutic benefits of nutritional supplements derived from bovine glandular tissues, which can deliver a variety of nutrients and bioactive molecules. We show that bovine thymus-derived extracts contain antigens found in neural tissues and are relevant to neuroinflammation, and supplementation of rats with thymus extracts induces production of IgG antibodies against neuronal and glial antigens. In a rat model of controlled cortical impact (CCI) we determined that animals supplemented with a nuclear extract of bovine thymus (TNF) display greatly improved performance on beam balance and spatial memory tests following CCI. Using RNA-Seq, we identified an array of signaling pathways that are modulated by TNF supplementation in rat hippocampus, including those involved in the process of autophagy. Finally, we demonstrate that TNF supplement-induced increase in blood levels of IgG autoantibodies against nervous system antigens correlates with better animal performance on behavioral tests. Together, our data show, for the first time, that a nutritional supplement containing nuclear fraction of bovine thymus is potent at enhancing the functional recovery from TBI in a rat model, modulates signaling pathways implicated in TBI pathology and recovery at gene and protein levels, and may be beneficial for reducing neuroinflammation and improving tissue repair.
Project description:Numerous studies have shown that resistance to oxidative stress is crucial to stay healthy and to reduce the adverse effects of aging. Accordingly, nutritional interventions using antioxidant food-grade compounds or food products are currently an interesting option to help improve health and quality of life in the elderly. Live lactic acid bacteria (LAB) administered in food, such as probiotics, may be good antioxidant candidates. Nevertheless, information about LAB-induced oxidative stress protection is scarce. To identify and characterize new potential antioxidant probiotic strains, we have developed a new functional screening method using the nematode Caenorhabditis elegans as host. C. elegans were fed on different LAB strains (78 in total) and nematode viability was assessed after oxidative stress (3mM and 5mM H2O2). One strain, identified as Lactobacillus rhamnosus CNCM I-3690, protected worms by increasing their viability by 30% and, also, increased average worm lifespan by 20%. We performed a transcriptomic analysis of C. elegans fed with this strain and showed that increased lifespan is correlated with differential expression of the DAF-16/insulin-like pathway, which is highly conserved in humans.
Project description:Subclinical necrotic enteritis (SNE) is one of the serious threats to the poultry industry. Probiotics have been proven to exert the beneficial effects in controlling SNE. However, the exact mechanisms of probiotics have not been fully elucidated, and few researchs have focused on their impact on miRNAs. Therefore, the purpose of this study was to explore the miRNA expression profles in the ileum of broiler chickens during probiotic supplement treatment for SNE. 180 newly hatched male chicks were randomly allocated in three groups, including negative control group(NC), SNE infection group(PC) and Bacillus licheniformis H2 pre-treatment group (BL). Illumina high-throughput sequencing was conducted to identify the miRNA expression of three groups. The results showed that 628 miRNAs, including 582 known miRNAs and 46 novel miRNAs, were detected in libraries. The target genes of 57 significantly differentially expressed miRNAs were predicted and annotated, which were found to partly enrich in pathways related to immunity and inflammation such as tumor necrosis factor receptor binding, immune response-regulating signaling pathway, activation of NF-kappaB-inducing kinase activity, interleukin-15 production, Toll-like receptor 2 signaling pathway and MAP kinase tyrosine/serine/threonine phosphatase activity. Our results provided comprehensive miRNA expression profles of these three different treatment groups. And these findings suggested that H2 could exert beneficial effects in controlling SNE may through immune and inflammatory response associated to altered miRNA expression.
Project description:Numerous studies have shown that resistance to oxidative stress is crucial to stay healthy and to reduce the adverse effects of aging. Accordingly, nutritional interventions using antioxidant food-grade compounds or food products are currently an interesting option to help improve health and quality of life in the elderly. Live lactic acid bacteria (LAB) administered in food, such as probiotics, may be good antioxidant candidates. Nevertheless, information about LAB-induced oxidative stress protection is scarce. To identify and characterize new potential antioxidant probiotic strains, we have developed a new functional screening method using the nematode Caenorhabditis elegans as host. C. elegans were fed on different LAB strains (78 in total) and nematode viability was assessed after oxidative stress (3mM and 5mM H2O2). One strain, identified as Lactobacillus rhamnosus CNCM I-3690, protected worms by increasing their viability by 30% and, also, increased average worm lifespan by 20%. We performed a transcriptomic analysis of C. elegans fed with this strain and showed that increased lifespan is correlated with differential expression of the DAF-16/insulin-like pathway, which is highly conserved in humans. Gene expression in C. elegans wild-type strain (N2) was analyzed in worm populations fed with E. coli OP50 (control condition) or the corresponding LAB (Lactobacillus rhamnosus CNCM I-3690 or Lactobacillus rhamnosus CNCM I-4317) . Three days and ten days feeding period was analyzed.