Project description:The goal of this study was to compare NGS-derived murine myometrial progenitor cell transcriptome profiling (RNA-seq) of an animal model of uterine fibroid tumorigenesis in rats exposed during uterine development to an endocrine-disrupting chemical, diethylstilbestrol (DES) versus vehicle (VEH) control, unexposed animals, to determine the pathways and biological processes, whose gene expression may be altered as a result of the exposure.
Project description:Pluripotent stem cell-derived islets (hPSC-islets) are a promising cell resource for diabetes treatment. Here, we demonstrate that transplantation of pluripotent stem cell-derived islets into diabetic nonprimates effectively restored endogenous insulin secretion and improved glycemic control. Single-cell RNA sequencing analysis of S6D2 clusters confirmed the existence of the three major pancreatic endocrine cell populations (β cells, α-like cells and δ-like cells) and their proportions, which altogether accounted for 80%. Importantly, hierarchical clustering of S6D2 hCiPSC-islets, 10 wpt kidney grafts and primary islets showed that the hCiPSC differentiated pancreatic endocrine cells shared similar global gene expression profiles to their native counterparts in primary islets. Single-cell RNA sequencing analysis on PBMCs revealed the potential immune response of recipient macaque to hCiPSC-islets.
Project description:Human pluripotent stem cell-derived islets (hPSC-islets) are a promising cell resource for diabetes treatment. Here, we demonstrate that transplantation of human pluripotent stem cell-derived islets into diabetic nonhuman primates effectively restored endogenous insulin secretion and improved glycemic control. Single-cell RNA sequencing analysis of S6D2 clusters confirmed the existence of the three major pancreatic endocrine cell populations (β cells, α-like cells and δ-like cells) and their proportions, which altogether accounted for 80%. Importantly, hierarchical clustering of S6D2 hCiPSC-islets, 10 wpt kidney grafts and primary human islets showed that the hCiPSC differentiated pancreatic endocrine cells shared similar global gene expression profiles to their native counterparts in primary human islets. Single-cell RNA sequencing analysis on PBMCs revealed the potential immune response of recipient macaque to hCiPSC-islets.
Project description:Human pluripotent stem cell-derived islets (hPSC-islets) are a promising cell resource for diabetes treatment. Here, we demonstrate that transplantation of human pluripotent stem cell-derived islets into diabetic nonhuman primates effectively restored endogenous insulin secretion and improved glycemic control. Single-cell RNA sequencing analysis of S6D2 clusters confirmed the existence of the three major pancreatic endocrine cell populations (β cells, α-like cells and δ-like cells) and their proportions, which altogether accounted for 80%. Importantly, hierarchical clustering of S6D2 hCiPSC-islets, 10 wpt kidney grafts and primary human islets showed that the hCiPSC differentiated pancreatic endocrine cells shared similar global gene expression profiles to their native counterparts in primary human islets. Single-cell RNA sequencing analysis on PBMCs revealed the potential immune response of recipient macaque to hCiPSC-islets.
Project description:Endocrine active substances present significant risks to both human health and the environment, particularly by disrupting essential endocrine-regulated functions like organism development and reproductive capacity. Regulatory frameworks mandate animal testing for chemical risk assessment, placing specific emphasis on suspected endocrine disruptors. For example, aquatic vertebrate chronic toxicity testing is mandatory at a chemical tonnage of 100 t/y using the Fish Early Life Stage (FELS, OECD TG 210) test. However, suspected endocrine disruptors are subjected to testing from a lower tonnage threshold of 10 t/y. Currently, the assessment of endocrine effects adheres to an OECD Conceptual Framework (CF) that employs a tiered approach. This entails evaluating existing data for potential endocrine effects (Level 1), conducting mechanism of action-specific in vitro studies (Level 2), and undertaking in vivo mechanistic screening studies (Level 3). If screening studies indicate potential endocrine disruption, further investigation is conducted using a Fish Sexual Development Test (FSDT, OECD TG 234) to clarify (anti)estrogenic, (anti)androgenic, and steroidal effects (EAS effects) in fish. Nevertheless, this testing process is resource-intensive, time-consuming, and involves extensive animal use. Therefore, this study aims to identify the androgenic activity of trenbolone using the zebrafish embryo model. Trenbolone, a synthetic anabolic steroid, primarily exerts its effects by binding to androgen receptors. The data collected will be compared with those obtained from androstenedione exposure to zebrafish embryos.
Project description:Bisphenol A (BPA), an endocrine-disrupting chemical (EDC), is a well-known, ubiquitous estrogenic chemical. To investigate the effects of fetal exposure to low-dose BPA on the development of the prostate, we first examined the alterations of in situ sex steroid hormonal environment in the mouse urogenital sinus (UGS). Next, to investigate the BPA-specific gene alterations related to increases of the E2 levels and aromatase activity, we performed comprehensive gene expression analysis using Affymetrix GeneChip in the BPA-treated or DES-treated male UGS at embryonic day 17th and postnatal day 1st.
2010-12-06 | GSE24928 | GEO
Project description:Probiotics attenuate glycemic levels and inflammatory cytokines in patients with type 1 diabetes mellitus
Project description:Glycemic control is a strong predictor of long-term cardiovascular risk in patients with diabetes mellitus, and poor glycemic control influences long-term risk of cardiovascular disease even decades after optimal medical management. This phenomenon, termed glycemic memory, has been proposed to occur due to stable programs of cardiac and endothelial cell gene expression. This transcriptional remodeling has been shown to occur in the vascular endothelium through a yet undefined mechanism of cellular reprogramming. Epigenetics offers a novel mechanism whereby a transient glycemic stress is capable of modifying endothelial susceptibility to the pathological remodeling of cardiovascular disease. In the current study, we show that transient glucose exposure triggers widespread alterations in endothelial DNA methylation which may control several recognized pathological mechanisms of cardiovascular disease, such as the nitric oxide signaling cascade. Future mechanistic studies should therefore investigate the extent to which differential methylation potentiates endothelial dysfunction in response to transient glycemic stress.