Project description:Adenine and cytosine base editors (ABEs and CBEs) represent a new genome editing technology that allows the programmable installation of A-to-G or C-to-T alterations on DNA. We engineered Streptococcus pyogenes Cas9-based adenine and cytosine base editor (SpACE) that enables efficient simultaneous introduction of A-to-G and C-to-T substitutions in the same base editing window on DNA.
2020-07-02 | GSE137411 | GEO
Project description:A Dual-Deaminase CRISPR Base Editor Enables Concurrent Adenine and Cytosine Editing
Project description:TIGIT+ Tregs suppress Th1 and Th17 responses while sparing Th2 responses. Analysis of global gene expression of TIGIT+ vs. TIGIT- Tregs from naive mice reveled that TIGIT+ Tregs display an activated phenotype and are enriched for Treg signature genes including the Treg effector molecule Fgl2 which enables them to selectively spare Th2 responses. TIGIT+ and TIGIT- Tregs were sorted from naïve Foxp3-GFP KI mice (pooled spleen and lymph nodes) TIGIT: T cell immunoreceptor with Ig and ITIM domains
Project description:CRISPR-Cas base editor technology enables targeted nucleotide alterations and is being rapidly deployed for research and potential therapeutic applications. The most widely used base editors induce DNA cytosine (C) deamination with rat APOBEC1 (rAPOBEC1) enzyme, which is targeted by a linked Cas protein-guide RNA (gRNA) complex. Previous studies of cytosine base editor (CBE) specificity have identified off-target DNA edits in human cells. Here we show that a CBE with rAPOBEC1 can cause extensive transcriptome-wide RNA cytosine deamination in human cells, inducing tens of thousands of C-to-uracil (U) edits with frequencies ranging from 0.07% to 100% in 38% - 58% of expressed genes. CBE-induced RNA edits occur in both protein-coding and non-protein-coding sequences and generate missense, nonsense, splice site, 5’ UTR, and 3’ UTR mutations. We engineered two CBE variants bearing rAPOBEC1 mutations that substantially decrease the numbers of RNA edits (reductions of >390-fold and >3,800-fold) in human cells. These variants also showed more precise on-target DNA editing and, with the majority of gRNAs tested, editing efficiencies comparable to those observed with wild-type CBE. Finally, we show that recently described adenine base editors (ABEs) can also induce transcriptome-wide RNA edits. These results have important implications for the research and therapeutic uses of base editors, illustrate the feasibility of engineering improved variants with reduced RNA editing activities, and suggest the need to more fully define and characterize the RNA off-target effects of deaminase enzymes in base editor platforms.
Project description:CRISPR-Cas base editor technology enables targeted nucleotide alterations and is being rapidly deployed for research and potential therapeutic applications. The most widely used base editors induce DNA cytosine (C) deamination with rat APOBEC1 (rAPOBEC1) enzyme, which is targeted by a linked Cas protein-guide RNA (gRNA) complex. Previous studies of cytosine base editor (CBE) specificity have identified off-target DNA edits in human cells. Here we show that a CBE with rAPOBEC1 can cause extensive transcriptome-wide RNA cytosine deamination in human cells, inducing tens of thousands of C-to-uracil (U) edits with frequencies ranging from 0.07% to 100% in 38% - 58% of expressed genes. CBE-induced RNA edits occur in both protein-coding and non-protein-coding sequences and generate missense, nonsense, splice site, 5’ UTR, and 3’ UTR mutations. We engineered two CBE variants bearing rAPOBEC1 mutations that substantially decrease the numbers of RNA edits (reductions of >390-fold and >3,800-fold) in human cells. These variants also showed more precise on-target DNA editing and, with the majority of gRNAs tested, editing efficiencies comparable to those observed with wild-type CBE. Finally, we show that recently described adenine base editors (ABEs) can also induce transcriptome-wide RNA edits. These results have important implications for the research and therapeutic uses of base editors, illustrate the feasibility of engineering improved variants with reduced RNA editing activities, and suggest the need to more fully define and characterize the RNA off-target effects of deaminase enzymes in base editor platforms. This SuperSeries is composed of the SubSeries listed below.
Project description:5-Methylcytosine (5mC) is a crucial epigenetic modification plays a significant role in the regulation of gene expression. Accurate and quantitative detection of 5mC at single-base resolution is essential for understanding its epigenetic functions within genomes. In this study, we develop a novel NaegleriaTET-assisted deaminase sequencing (NTD-seq) method for the base-resolution and quantitative detection of 5mC in genomic DNA. The TAD-seq method utilizes a Naegleria TET-like dioxygenase (nTET) to oxidize 5mC, generating 5-methylcytosine oxidation products (5moC). We also engineered a variant of the human apolipoprotein B mRNA-editing catalytic polypeptide-like 3A (A3A), creating an A3A mutant (A3Am). Treatment with A3Am results in the conversion of cytosine to uracil, while 5moC remains unchanged. Consequently, TAD-seq enables the direct deamination of cytosine to uracil by A3Am, which is sequenced as thymine, whereas 5mC, once oxidized to 5moC by nTET, resists deamination and is sequenced as cytosine. Therefore, the cytosines that persist in the sequencing data represent the original 5mC sites. We applied NTD-seq to HEK293T cells, generating a base-resolution map of 5mC that exhibits strong concordance with maps generated by conventional BS-seq. NTD-seq emerges as a powerful, bisulfite-free approach for the single-base resolution mapping of 5mC stoichiometry in genomic DNA.
Project description:5-Methylcytosine (5mC) is a crucial epigenetic modification plays a significant role in the regulation of gene expression. Accurate and quantitative detection of 5mC at single-base resolution is essential for understanding its epigenetic functions within genomes. In this study, we develop a novel nTET-assisted deaminase sequencing (TAD-seq) method for the base-resolution and quantitative detection of 5mC in genomic DNA. The TAD-seq method utilizes a Naegleria TET-like dioxygenase (nTET) to oxidize 5mC, generating 5-methylcytosine oxidation products (5moC). We also engineered a variant of the human apolipoprotein B mRNA-editing catalytic polypeptide-like 3A (A3A), creating an A3A mutant (A3Am). Treatment with A3Am results in the conversion of cytosine to uracil, while 5moC remains unchanged. Consequently, TAD-seq enables the direct deamination of cytosine to uracil by A3Am, which is sequenced as thymine, whereas 5mC, once oxidized to 5moC by nTET, resists deamination and is sequenced as cytosine. Therefore, the cytosines that persist in the sequencing data represent the original 5mC sites. We applied TAD-seq to HEK293T cells, generating a base-resolution map of 5mC that exhibits strong concordance with maps generated by conventional BS-seq. TAD-seq emerges as a powerful, bisulfite-free approach for the single-base resolution mapping of 5mC stoichiometry in genomic DNA.