Project description:Shigella flexneri 2a and Shigella sonnei were genetically modified to shed large quantities of outer membrane blebs. The blebs, called Generalized Modules for Membrane Antigens (GMMA), were purified and the protein content was estimated using the label-free iBAQ procedure. There were 2308 proteins identified, 660 in GMMA and 2239 in bacteria, of which 288 (GMMA) and 1695 (bacteria) were common to both S. flexneri 2a and S. sonnei. Protein abundances were classified according to the predicted localization. Predicted outer membrane or periplasmic proteins constituted 95.7% and 98.7% of the protein mass of S. flexneri 2a and S. sonnei GMMA, respectively. Among the remaining proteins, small quantities of ribosomal proteins collectively accounted for more than half of the predicted cytoplasmic protein impurities in the GMMA. In GMMA, the outer membrane and periplasmic proteins were enriched 13.3-fold (S. flexneri 2a) and 8.3-fold (S. sonnei) compared to their abundance in the parent bacteria. Both periplasmic and outer membrane proteins were enriched similarly, suggesting that GMMA have a similar surface to volume ratio as the surface to periplasmic volume ratio in these mutant bacteria. Results in S. flexneri 2a and S. sonnei showed high reproducibility indicating a robust GMMA-producing process.
Project description:This article describes Bacillus anthracis strains isolated during an outbreak of anthrax on the Yamal Peninsula in the summer of 2016 and independently in Yakutia in 2015. A common feature of these strains is their conservation in permafrost, from which they were extracted either due to the thawing of permafrost (Yamal strains) or as the result of paleontological excavations (Yakut strains). All strains isolated on the Yamal share an identical genotype belonging to lineage B.Br.001/002, pointing to a common source of infection in a territory over 250 km in length. In contrast, during the excavations in Yakutia, three genetically different strains were recovered from a single pit. One strain belongs to B.Br.001/002, and whole genome sequence analysis showed that it is most closely related to the Yamal strains in spite of the remoteness of Yamal from Yakutia. The two other strains contribute to two different branches of A.Br.008/011, one of the remarkable polytomies described so far in the B. anthracis species. The geographic distribution of the strains belonging to A.Br.008/011 is suggesting that the polytomy emerged in the thirteenth century, in combination with the constitution of a unified Mongol empire extending from China to Eastern Europe. We propose an evolutionary model for B. anthracis recent evolution in which the B lineage spread throughout Eurasia and was subsequently replaced by the A lineage except in some geographically isolated areas.
Project description:The deformation of all materials can be separated into elastic and plastic parts. Measuring the purely plastic component is complex but crucial to fully characterize, understand, and engineer structural materials to "bend, not break." Our approach has mapped this to answer the long-standing riddle in materials mechanics: The low toughness of body-centered cubic metals, where we advance an experimentally led mitigative theory. At a micromechanically loaded crack, we measured in situ the stress state applied locally on slip systems, and the dislocation content, and then correlatively compared with the occurrence-or not-of toughness-inducing local plasticity. We highlight limitations and potential misinterpretations of commonly used postmortem transmission electron imaging. This should enable better-informed design for beneficial plasticity and strength in crystalline and amorphous solids alike.