Project description:Developmental experiences play critical roles in shaping adult physiology and behavior. We and others previously showed that adult C. elegans which transiently experienced dauer arrest during development (PD: post-dauer) exhibit distinct gene expression profiles as compared to control adults which bypassed the dauer stage. In particular, the expression patterns of subsets of chemoreceptor genes are markedly altered in PD adults. Whether altered chemoreceptor levels drive plasticity in chemosensory behaviors in PD adults is unknown. Via transcriptional profiling of sorted populations of AWA neurons from control and PD adults, we further show that the expression of a subset of chemoreceptor genes in AWA are differentially regulated in PD animals. Our results suggest that developmental experiences may be encoded at the level of olfactory receptor regulation, and provide an elegant mechanism by which C. elegans is able to precisely modulate its behavioral preferences as a function of its current and past experiences.
Project description:Most human transcription factors bind a small subset of potential genomic sites and often use different subsets in different cell types. To identify mechanisms that govern cell type-specific transcription factor binding, we used an integrative approach to study estrogen receptor α (ER). We found that ER exhibits two distinct modes of binding. Shared sites, bound in multiple cell types, are characterized by high affinity estrogen response elements (EREs), inaccessible chromatin and a lack of DNA methylation, while cell-specific sites are characterized by a lack of EREs, co-occurrence with other transcription factors and cell type-specific chromatin accessibility and DNA methylation. These observations enabled accurate quantitative models of ER binding that suggest tethering of ER to one-third of cell-specific sites. The distinct properties of cell-specific binding were also observed with glucocorticoid receptor and for ER in primary mouse tissues, representing an elegant genomic encoding scheme for generating cell type-specific gene regulation. ChIP-seq of transcription factors in mouse tissues
Project description:High connectivity among breeding populations of the Elegant Tern (Thalasseus elegans) in Mexico and southern California revealed through population genomic analysis