Project description:We report the sequences bound to CENP-A in the dog genome (Canis familiaris) for high-throughput characterization of centromeric sequences. We compare these ChIPSeq reads (72 bp, single read) against a reference centromeric satellite DNA domain database for the dog genome, resulting in the annotation of sequence variation and estimated abundance of seven satellite families together with adjacent, non-satellite sequences. To study global patterns of sequence diversity and characterizing the subset of sequences correlated with centromere function, these sequences were evaluated relative to a comprehensive centromere sequence domain k-mer library. From this analysis, we identify functional sequence features from two satellite families (CarSat1 and CarSat2) that are defined by distinct arrays subtypes. Sequences bound to CENP-A in MDCK (dog) cell line
Project description:Transposon insertion site sequencing (TIS) is a powerful method for associating genotype to phenotype. However, all TIS methods described to date use short nucleotide sequence reads which cannot uniquely determine the locations of transposon insertions within repeating genomic sequences where the repeat units are longer than the sequence read length. To overcome this limitation, we have developed a TIS method using Oxford Nanopore sequencing technology that generates and uses long nucleotide sequence reads; we have called this method LoRTIS (Long Read Transposon Insertion-site Sequencing). This experiment data contains sequence files generated using Nanopore and Illumina platforms. Biotin1308.fastq.gz and Biotin2508.fastq.gz are fastq files generated from nanopore technology. Rep1-Tn.fastq.gz and Rep1-Tn.fastq.gz are fastq files generated using Illumina platform. In this study, we have compared the efficiency of two methods in identification of transposon insertion sites.
Project description:Coupling molecular biology to high throughput sequencing has revolutionized the study of biology. Molecular genomics techniques are continually refined to provide higher resolution mapping of nucleic acid interactions and nucleic acid structure. These assays are converging on single-nucleotide resolution measurements, but the sequence preferences of molecular biology enzymes can interfere with the accurate interpretation of the data. Enzymatic sequence preferences manifest more prominently as the resolution of these assays increase. We developed seqOutBias to seek out enzymatic sequence bias from experimental data and scale individual sequence reads to correct the bias. We show that this software efficiently and successfully corrects the sequence bias resulting from DNase-seq, TACh-seq, ATAC-seq, MNase-seq, and PRO-seq data.
Project description:This study describes the epigenetic profiling of Mll1 in mouse ES cells cultures in LIF/serum/feeder-free condition. ChIP-Seq profile of Mll1 was generated in E14Tg2a (E14) mESCs. A sequence profile of genomic DNA (Input) is also included.
Project description:We provide a broad overview of sequence diversity in An. gambiae mature microRNAs, including annotation of novel microRNAs identified in this study.
Project description:We report the sequences bound to CENP-A in the dog genome (Canis familiaris) for high-throughput characterization of centromeric sequences. We compare these ChIPSeq reads (72 bp, single read) against a reference centromeric satellite DNA domain database for the dog genome, resulting in the annotation of sequence variation and estimated abundance of seven satellite families together with adjacent, non-satellite sequences. To study global patterns of sequence diversity and characterizing the subset of sequences correlated with centromere function, these sequences were evaluated relative to a comprehensive centromere sequence domain k-mer library. From this analysis, we identify functional sequence features from two satellite families (CarSat1 and CarSat2) that are defined by distinct arrays subtypes.
Project description:Purpose: The goals of this study are to elucidate the underlying mechanism for the regulation of HSC divisions. Methods: One hundred thousand cells of subfractions within the HSC fraction were sorted. These cells were subjected to ATAC-sequence by using 10X Genomics Chromium Next GEM Single Cell ATAC Reagent Kits v1.1. The sequence reads that passed quality filters were analyzed by FASTX-toolkit.