Project description:Using whole genome bisulfite sequencing to provide single-base resolution of DNA methylation status in the endosperm of wild-type (ZH11) and ta2-1 rice plants, and identify hypermethylated regions in ta2-1.
Project description:In this study, we provide a global overview of genome-wide OsHOX24 binding sites in rice under control and desiccation stress conditions in wild-type and OsHOx24 overexpressing rice plants (H49 line) via chromatin immunoprecipitation sequencing (ChIP-sequencing) approach. We identified numerous downstream targets of OsHOX24 under desiccation stress and control by analyzing the comprehensive binding site map of OsHOX24 at whole genome level in rice.
Project description:We created a mutator protein. The mutator, was prepared by fusing a PmCDA1 (Petromyzon marinus Cytidine DeAminase) and E.coli RNA polymerase alpha subunit(EcoRNAP alpha). After 120 cycles, whole genome sequencing was performed on the wild type and evolved sample. After characterization of the mutation capacity of our mutator, we evolved a sucrose utilization strain and we sequenced Suc strain.
Project description:Genetic diversity in plants is remarkably high. Recent whole genome sequencing (WGS) of 67 rice accessions recovered 10,872 novel genes. Comparison of the genetic architecture among divergent populations or between crops and wild relatives is essential for obtaining functional components determining crucial traits. However, many major crops have gigabase-scale genomes, which are not well-suited to WGS. Existing cost-effective sequencing approaches including re-sequencing, exome-sequencing and restriction enzyme-based methods all have difficulty in obtaining long novel genomic sequences from highly divergent population with large genome size. The present study presented a reference-independent core genome targeted sequencing approach, CGT-seq, which employed epigenomic information from both active and repressive epigenetic marks to guide the assembly of the core genome mainly composed of promoter and intragenic regions. This method was relatively easily implemented, and displayed high accuracy, sensitivity and specificity for capturing the core genome of bread wheat. 95% intragenic and 89% promoter region from wheat were covered by CGT-seq read. We further demonstrated in rice that CGT-seq captured hundreds of novel genes and regulatory sequences from a previously unsequenced ecotype. Together, with specific enrichment and sequencing of regions within and nearby genes, CGT-seq is a time- and resource-effective approach to profiling functionally relevant regions in sequenced and non-sequenced populations with large genomes.
Project description:14 F1 individuals that resulted from crosses between a 420-CEN3 reporter line and met1-3/+ plants were subject to whole-genome bisulphite sequencing alongside Col wild-type and met1-3/+ controls