Project description:The mammalian cell cycle is controlled by the E2F family of transcription factors. Typical E2Fs bind to DNA as heterodimers with the related dimerization partner (DP) proteins, whereas the atypical E2Fs, E2F7 and E2F8 contain two DNA-binding domains (DBDs) and act as repressors. To understand the mechanism of repression, we have resolved the structure of E2F8 in complex with DNA at atomic resolution. We find that the first and second DBDs of E2F8 resemble the DBDs of typical E2F and DP proteins, respectively. Using molecular dynamics simulations, biochemical affinity measurements and chromatin immunoprecipitation, we further show that both atypical and typical E2Fs bind to similar DNA sequences in vitro and in vivo. Our results represent the first crystal structure of an E2F protein with two DBDs, and reveal the mechanism by which atypical E2Fs can repress canonical E2F target genes and exert their negative influence on cell cycle progression.
Project description:Using ChIP-chip assays, we examined the binding patterns of three members of E2F family in five different cell types. Keywords: ChIP-chip We used ENCODE arrays to determine the loaction of E2F family, then identify their binding motifs in vivo. We used promoter arrays to assess the relationship of E2F family in five different cells including tumor and normal cells.
Project description:Recent genome-scale ChIP-chip studies of transcription factors have shown that a low percentage of experimentally determined binding sites contain the consensus motif for the immunoprecipitated factor. In most cases, differences between in vivo target sites that contain or lack a consensus motif have not been explored. We have previously shown that most sites to which E2F family members are bound in vivo do not contain E2F consensus motifs. The main purpose of this study was to develop an understanding of how E2F binding specificity is achieved in vivo. In particular, we have addressed how E2F family members are recruited to core promoter regions that lack a consensus motif and are excluded from other regions that contain a consensus motif. Using promoter and ENCODE arrays, we have shown that the predominant factors specifying whether E2F is recruited to an in vivo binding site are a) the site must be in a core promoter and b) the promoter region must be utilized as a promoter by the transcriptional machinery in that particular cell type. We have tested three models for recruitment of E2F to core promoters lacking a consensus site, including a) indirect recruitment, b) looping to the core promoter mediated by an E2F bound to a distal consensus motif, and c) assisted binding of E2F to a site that weakly resembles an E2F consensus motif within the core promoter. To test these models, we developed a new in vivo assay, termed eChIP, which allows analysis of transcription factor binding to isolated promoter fragments. Our findings suggest that in vivo a) the presence of a consensus motif is not sufficient to recruit E2Fs, b) E2Fs can bind to isolated regions that lack a consensus motif, and c) binding can require regions other than the best match to the E2F PWM in the core promoter. Keywords: E2F, ChIP-chip, transcription factor binding, consensus motifs 37 ChIP-chip arrays (of these, 14 array sets are biological duplicates). 22 samples are included in this series, the rest can be found in supplementary info to the following papers: Xu 2007, Jin 2006, Komashko 2008
Project description:Using ChIP-chip assays, we examined the binding patterns of three members of E2F family in five different cell types. Keywords: ChIP-chip
Project description:Recent genome-scale ChIP-chip studies of transcription factors have shown that a low percentage of experimentally determined binding sites contain the consensus motif for the immunoprecipitated factor. In most cases, differences between in vivo target sites that contain or lack a consensus motif have not been explored. We have previously shown that most sites to which E2F family members are bound in vivo do not contain E2F consensus motifs. The main purpose of this study was to develop an understanding of how E2F binding specificity is achieved in vivo. In particular, we have addressed how E2F family members are recruited to core promoter regions that lack a consensus motif and are excluded from other regions that contain a consensus motif. Using promoter and ENCODE arrays, we have shown that the predominant factors specifying whether E2F is recruited to an in vivo binding site are a) the site must be in a core promoter and b) the promoter region must be utilized as a promoter by the transcriptional machinery in that particular cell type. We have tested three models for recruitment of E2F to core promoters lacking a consensus site, including a) indirect recruitment, b) looping to the core promoter mediated by an E2F bound to a distal consensus motif, and c) assisted binding of E2F to a site that weakly resembles an E2F consensus motif within the core promoter. To test these models, we developed a new in vivo assay, termed eChIP, which allows analysis of transcription factor binding to isolated promoter fragments. Our findings suggest that in vivo a) the presence of a consensus motif is not sufficient to recruit E2Fs, b) E2Fs can bind to isolated regions that lack a consensus motif, and c) binding can require regions other than the best match to the E2F PWM in the core promoter. Keywords: E2F, ChIP-chip, transcription factor binding, consensus motifs
Project description:The human pocket proteins retinoblastoma (Rb), p107, and p130 are critical negative regulators of the cell cycle and contribute to tumor suppression. While strong structural conservation within the pocket protein family provides for some functional redundancy, important differences have been observed and may underlie the reason that Rb is a uniquely potent tumor suppressor. It has been proposed that distinct pocket protein activities are mediated by their different E2F transcription factor binding partners. In humans, Rb binds E2F1-E2F5, whereas p107 and p130 almost exclusively associate with E2F4 and E2F5. To identify the molecular determinants of this specificity, we compared the crystal structures of Rb and p107 pocket domains and identified several key residues that contribute to E2F selectivity in the pocket family. Mutation of these residues in p107 to match the analogous residue in Rb results in an increase in affinity for E2F1 and E2F2 and an increase in the ability of p107 to inhibit E2F2 transactivation. Additionally, we investigated how phosphorylation by Cyclin-dependent kinase on distinct residues regulates p107 affinity for the E2F4 transactivation domain. We found that phosphorylation of residues S650 and S975 weakens the E2F4 transactivation domain binding. Our data reveal molecular features of pocket proteins that are responsible for their similarities and differences in function and regulation.
Project description:HER2 / Neu is amplified and overexpressed in a large proportion of human breast cancers, but the signaling pathways that contribute to tumor development and metastatic progression are not completely understood. Using gene expression data and pathway signatures we predicted a role for activator E2F transcription factors in Neu induced tumors. This was genetically tested by interbreeding Neu transgenics with knockouts of the three activator E2Fs. Loss of any E2F delayed Neu induced tumor onset. E2F1 loss accelerated tumor growth while E2F2 and E2F3 loss did not. Strikingly, it was observed that loss of E2F1 or E2F2 significantly reduced the metastatic capacity of the tumor and this was associated with a reduction in circulating tumor cells in the E2F2 knockout. Gene expression analysis between the tumors in the various E2F mutant backgrounds revealed that there was extensive compensation by other E2F family members in the individual knockouts, underscoring the importance of the E2Fs in HER2 / Neu induced tumors. Extension to HER2 positive human breast cancer revealed a number of HER2+ subtypes based on E2F activity with differences in relapse free survival times. Taken together these data demonstrate that the E2F transcription factors are integral to HER2+ tumor development and progression.
Project description:Most E2F-binding sites repress transcription through the recruitment of Retinoblasoma (RB) family members until the end of the G1 cell-cycle phase. Although the MYB promoter contains an E2F-binding site, its transcription is activated shortly after the exit from quiescence, before RB family members inactivation, by unknown mechanisms. We had previously uncovered a nuclear factor distinct from E2F, Myb-sp, whose DNA-binding site overlapped the E2F element and had hypothesized that this factor might overcome the transcriptional repression of MYB by E2F-RB family members. We have purified Myb-sp and discovered that Myc-associated zinc finger proteins (MAZ) are major components. We show that various MAZ isoforms are present in Myb-sp and activate transcription via the MYB-E2F element. Moreover, while forced RB or p130 expression repressed the activity of a luciferase reporter driven by the MYB-E2F element, co-expression of MAZ proteins not only reverted repression, but also activated transcription. Finally, we show that MAZ binds the MYB promoter in vivo, that its binding site is critical for MYB transactivation, and that MAZ knockdown inhibits MYB expression during the exit from quiescence. Together, these data indicate that MAZ is essential to bypass MYB promoter repression by RB family members and to induce MYB expression.
Project description:The long-term maintenance of the adult neurogenic niche and neurogenesis is dependent on the proper regulation of entry and exit from quiescence. The dynamic transition from quiescence to activation is a complex process requiring not only precise cell cycle control, but also a co-ordinated phenotypic transition involving transcriptional and morphological changes. Presently, the mechanisms by which such a complex repertoire of factors interact and co-ordinate with the core cell cycle machinery to mediate these critical NSC fate transitions remains unknown. Here we show that the Rb/E2F axis functions as an on-off switch for NSC quiescence and activation, by linking the cell cycle machinery to pivotal regulators of NSC fate. Compound deletion of Rb family proteins results in massive activation and expansion of NSCs, and induces a global transcriptomic transition towards NSC activation followed by niche depletion. Deletion of their target activator E2Fs1/3 results in the failure of NSCs to become activated and the acquisition of a global transcriptome associated with intractable NSC quiescence and the cessation of adult neurogenesis. We further show that the Rb/E2F axis orchestrates these fate transitions through the direct regulation of factors essential to NSC function, including REST and ASCL1. This places the Rb/E2F axis as a master regulator of NSC fate, coordinating cell cycle control with NSC activation and quiescence fate transitions.