Project description:Single-nucleus RNA sequencing of positional airway organoids derived from human fetal lung at 4 anatomic regions (trachea, bronchus, NCA, distal)
Project description:Cancer invasion and metastasis have been likened to wound healing gone awry. Despite striking parallels in cellular behavior between cancer progression and wound healing, the molecular relationships between these two processes, and their prognostic implications, are unclear. Here, based on gene expression profiles of fibroblasts from 10 anatomic sites, we identify a stereotyped gene expression program in response to serum exposure that appears to reflect the multifaceted role of fibroblasts in wound healing. The genes comprising this fibroblast common serum response are coordinately regulated in many human tumors, allowing us to identify tumors with gene expression signatures suggestive of active wounds. Genes induced in the fibroblast serum-response program are expressed in tumors by the tumor cells themselves, by tumor-associated fibroblasts, or both. The molecular features that define this wound-like phenotype can be evident at an early clinical stage, persist during treatment, and predict increased risk of metastasis and death in breast, lung, and gastric carcinomas. Thus, the transcriptional signature of the response of fibroblasts to serum links cancer progression and wound healing, and provides a powerful predictor of the clinical course in several common carcinomas. Human primary fibroblasts from 10 anatomic sites were expand in DMEM supplemented with 10% fetal calf serum, penicillin/streptomycin, and glutamine. Messenger RNA was harvested from cells 48 hours after the last media change or switch to media containing 0.1% FCS as previously described (Chang et al., 2002). Global gene expression patterns in 50 fibroblast cultures derived from 10 anatomic sites, cultured in the presence of 10% or 0.1% FBS, respectively, were characterized by DNA microarray hybridization (Chang et al., 2002).
Project description:Underdeveloped lungs are the primary cause of death in premature infants, however, little is known about stem and progenitor cell maintenance during human lung development. In this study, we have identified that FGF7, Retinoic Acid and CHIR-99021, a small molecule that inhibits GSK3 to activate Wnt signaling, support in vitro maintenance of primary human fetal lung bud tip progenitor cells in a progenitor state. Furthermore, these factors are sufficient to derive a population of human bud tip-like progenitor cells in 3D organoid structures from human pluripotent stem cells (hPSC). Functional studies showed that hPSC-derived bud tip progenitor organoids do not contain any mesenchymal cell types, maintain multilineage potential in vitro and are able to engraft into the airways of injured mice and respond to systemic factors. We performed RNA-sequencing to assess the degree of similarity in global gene expression profiles between the full human fetal lung (59-127 days gestation), isolated human fetal bud tip progenitors, organoids grown from primary fetal bud tip progenitors, and hPSC-derived bud tip organoids. Results showed that hPSC-derived organoids have molecular profiles similar to organoids generated from primary human fetal lung tissue. Gene expression differences between hPSC-derived bud tip organoids and fetal progenitor organoids may be related to the presence of contaminating mesenchymal cells in primary cultures. hPSC-derived bud tip organoids are generated from a well-defined human cell sources, offering a distinct advantage over rare primary tissue as a means to study human specific lung development, homeostasis and disease.<br>Sample Nomenclature - Description<br> -------------------------------------------------------------------------<br> Peripheral fetal lung the distal/peripheral portion of the fetal lung (i.e., distal 0.5 cm) was excised from the rest of the lung using a scalpel. This includes all components of the lung (e.g., epithelial, mesenchymal, vascular). <br>Isolated fetal bud tip the bud peripheral portion of the fetal lung was excised with a scalpel and subjected to enzymatic digestion and microdissection. The epithelium was dissected and separated from the mesenchyme, but a small amount of associated mesenchyme likely remained. <br>Fetal progenitor organoid 3D organoid structures that arose from culturing isolated fetal epithelial bud tips. <br>Foregut spheroid 3D foregut endoderm structure as described in Dye et al. (2015). Gives rise to patterned lung organoid (PLO) when grown in 3F medium. <br> Patterned lung organoid (PLO) lung organoids that were generated by differentiating hPSCs, as described throughout the manuscript. <br> Bud tip organoid organoids derived from PLOs, enriched for SOX2/SOX9 co-expressing cells, and grown/passaged in 3F medium.
Project description:The goal of this project was to understand if lasermicrodissected epithial portions of postanatal and fetal human lung tissue could be used for proteomics, and then, further confirmed by immunostaining. The proteomic data obtained from postanatal bronchi was compared to the one obtained from alveoli, with the same being applied to the fetal bronchi and canaliculi.