Project description:The experiments were carried out to map the ligand binding landscape of various DNA and RNA duplexed aptamer families. Duplexed Aptamer (DA) constructs were engineered from (i) natural and synthetic DNA and RNA aptamers and (i) synthetic oligonucleotide aptamer-complementary elements synthesized on custom DNA microarrays. The aptamers tested consist of the ATP DNA aptamer, the ATP RNA aptamer, the cocaine DNA aptamer, the human alpha-thrombin DNA aptamer, and the natural add riboswitch aptamer from the pathogenic bacteria Vibrio vulnificus. Each duplexed aptamer family consists of 1000's of synthetic constructs, each formed by hybridizing the aptamer with an aptamer-complementary element (ACE) - here, ACEs consisted of various DNA oligonucleotides synthesized as a custom DNA microarray.
Project description:The experiments were carried out to map the ligand binding landscape of various DNA and RNA duplexed aptamer families. Duplexed Aptamer (DA) constructs were engineered from (i) natural and synthetic DNA and RNA aptamers and (i) synthetic oligonucleotide aptamer-complementary elements synthesized on custom DNA microarrays. The aptamers tested consist of the ATP DNA aptamer, the ATP RNA aptamer, the cocaine DNA aptamer, the human alpha-thrombin DNA aptamer, and the natural add riboswitch aptamer from the pathogenic bacteria Vibrio vulnificus. Each duplexed aptamer family consists of 1000's of synthetic constructs, each formed by hybridizing the aptamer with an aptamer-complementary element (ACE) - here, ACEs consisted of various DNA oligonucleotides synthesized as a custom DNA microarray.
Project description:The experiments were carried out to map the ligand binding landscape of various DNA and RNA duplexed aptamer families. Duplexed Aptamer (DA) constructs were engineered from (i) natural and synthetic DNA and RNA aptamers and (i) synthetic oligonucleotide aptamer-complementary elements synthesized on custom DNA microarrays. The aptamers tested consist of the ATP DNA aptamer, the ATP RNA aptamer, the cocaine DNA aptamer, the human alpha-thrombin DNA aptamer, and the natural add riboswitch aptamer from the pathogenic bacteria Vibrio vulnificus. Each duplexed aptamer family consists of 1000's of synthetic constructs, each formed by hybridizing the aptamer with an aptamer-complementary element (ACE) - here, ACEs consisted of various DNA oligonucleotides synthesized as a custom DNA microarray.
Project description:The experiments were carried out to map the ligand binding landscape of various DNA and RNA duplexed aptamer families. Duplexed Aptamer (DA) constructs were engineered from (i) natural and synthetic DNA and RNA aptamers and (i) synthetic oligonucleotide aptamer-complementary elements synthesized on custom DNA microarrays. The aptamers tested consist of the ATP DNA aptamer, the ATP RNA aptamer, the cocaine DNA aptamer, the human alpha-thrombin DNA aptamer, and the natural add riboswitch aptamer from the pathogenic bacteria Vibrio vulnificus. Each duplexed aptamer family consists of 1000's of synthetic constructs, each formed by hybridizing the aptamer with an aptamer-complementary element (ACE) - here, ACEs consisted of various DNA oligonucleotides synthesized as a custom DNA microarray.
Project description:The experiments were carried out to map the ligand binding landscape of various DNA and RNA duplexed aptamer families. Duplexed Aptamer (DA) constructs were engineered from (i) natural and synthetic DNA and RNA aptamers and (i) synthetic oligonucleotide aptamer-complementary elements synthesized on custom DNA microarrays. The aptamers tested consist of the ATP DNA aptamer, the ATP RNA aptamer, the cocaine DNA aptamer, the human alpha-thrombin DNA aptamer, and the natural add riboswitch aptamer from the pathogenic bacteria Vibrio vulnificus. Each duplexed aptamer family consists of 1000's of synthetic constructs, each formed by hybridizing the aptamer with an aptamer-complementary element (ACE) - here, ACEs consisted of various DNA oligonucleotides synthesized as a custom DNA microarray.
Project description:The experiments were carried out to map the ligand binding landscape of various DNA and RNA duplexed aptamer families. Duplexed Aptamer (DA) constructs were engineered from (i) natural and synthetic DNA and RNA aptamers and (i) synthetic oligonucleotide aptamer-complementary elements synthesized on custom DNA microarrays. The aptamers tested consist of the ATP DNA aptamer, the ATP RNA aptamer, the cocaine DNA aptamer, the human alpha-thrombin DNA aptamer, and the natural add riboswitch aptamer from the pathogenic bacteria Vibrio vulnificus. Each duplexed aptamer family consists of 1000's of synthetic constructs, each formed by hybridizing the aptamer with an aptamer-complementary element (ACE) - here, ACEs consisted of various DNA oligonucleotides synthesized as a custom DNA microarray.
Project description:Antibody-based affinity purification of macromolecular complexes has revolutionized the study of protein-protein interactions. Here, we present AptA-MS (Aptamer Affinity – Mass Spectrometry), a robust strategy using a specific, high-affinity RNA aptamer against GFP to identify novel interactors of a GFP-tagged protein using high resolution MS. AptA-MS offers a high signal-to-noise ratio due to the absence of immunoprecipitation-derived contaminants and allows the identification of post-translational modifications without the need for modification-specific enrichments.
Project description:siRNAs have played a major role in cancer drug discovery, but their potential is hampered due to off-target effects. Thus, delivery systems like RNA aptamers have been used to enhance the specific delivery of these siRNAs to cancer stem cells. We report the efficacy of three different EpCAM aptamer siRNA chimeras, which were investigated both in vitro and in vivo for their ability to reduce cancer cell progression. Using these chimeras, we demonstrated specific gene knockdown in EpCAM positive cells which ultimately led to the apoptosis. To study the efficacy of these aptamer chimeras in vivo, retinoblastoma xenografts bearing NCC Rb C 51 cells were created for the first time. Systemic administration of these aptamer chimeras reduced tumour growth to about 50%. We further investigated the central Role of PLK1 in Cancer Progression and demonstrated the anti-cancer effects of targeted EpCAM siPLK1 approach. Using SILAC-Mass spectrometry analysis, we showed that silencing PLK 1 gene can lead to p53 mediated cell cycle arrest. Thus, we establish EpCAM-siRNA chimeras as potential markers for targeted anti-cancer applications, which paves a platform for efficient second line of therapies in addition to existing chemotherapy options.
Project description:We genearted a DNA aptamer against EPX via SELEX protocol using a random DNA library and developed an assay to monitor EPX in patients spitum samples After 15 rounds of selection, the aptamer sequences were obtained by high throughput sequencing