Project description:This comparative transcriptomic study examines the differences in the gene expression profile in PBMCs from indigenous Sahiwal and Crossbred (Sahiwal x Holstein Friesian) cattle in response to Infection with virulent Mycobacterium tuberculosis and vaccine stain M. bovis BCG.
Project description:Bovine tropical theileriosis is a major haemoprotozoan disease associated with high rates of morbidity and mortality particularly in exotic and crossbred cattle. It is one of the major constraints for of the livestock development programmes in India and southern Asia. Indigenous cattle (Bos indicus) are less affected by this disease than exotic and crossbred cattle. Genetic basis of resistance to tropical theileriosis in indigenous cattle is not well studied. Recent studies gives an idea that differentially genes expressed in exotic and indigenous breeds play an important role in breed specific resistance to tropical theileriosis. The present study was designed to visualize the global gene expression profiling in PBMCs derived from indigenous (Tharparkar) and crossbred cattle with in vitro infection of T. annulata. T. annulata Parbhani strain, originally isolated from Maharashtra (India) and maintained as cryopreserved stabilates of ground-up tick tissue sporozoite (GUTS) of infected H. anatolicum anatolicum was used as infective material. Two separate microarray experiments were carried out using separately each for crossbred and Tharparkar cattle. The crossbred cattle showed 1082 differentially expressed genes (DEGs). Out of total DEGs, 597 genes were downregulated and 485 were upregulated. Their fold change varies from 2283.93 to -4816.02. Tharparkar cattle showed 875 differentially expressed genes. Out of total DEGs in Tharparkar cattle, 451 genes were downregulated and 424 genes were upregulated. Their fold change varies from 94.93 to -19.20. A subset of genes was validated by quantitative RT-PCR and results correlated well with data obtained from the microarrays indicating that the microarray results gave an accurate report of transcript level. Functional annotation study of differentially expressed genes has confirmed their involvement in various pathways including response to oxidative stress, immune system regulation, cell proliferation, cytoskeletal changes, kinases activity and apoptosis. Gene network analysis of these differentially expressed genes provided an effective way to understand the interaction among them. It is therefore, hypothesised that the dissimilar susceptibility to tropical theileriosis exhibited by indigenous and crossbred cattle is due to breed-specific differences in the interaction of infected cells with other immune cells, which ultimately influences the immune response generated against T. annulata infection. Global gene expression profiling in PBMCs derived from indigenous (Tharparkar) and crossbred cattle were studied after in vitro infection of T. annulata Parbhani strain at 2h time period. Two separate microarray experiments were carried out using Bovine (V2) Gene Expression Microarray, 4x44K (Agilent). Two biological replicate samples were profiled per condition (i.e. replicates samples each in crossbred and Tharparkar cattle).
Project description:Bovine tropical theileriosis is a major haemoprotozoan disease associated with high rates of morbidity and mortality particularly in exotic and crossbred cattle. It is one of the major constraints for of the livestock development programmes in India and southern Asia. Indigenous cattle (Bos indicus) are less affected by this disease than exotic and crossbred cattle. Genetic basis of resistance to tropical theileriosis in indigenous cattle is not well studied. Recent studies gives an idea that differentially genes expressed in exotic and indigenous breeds play an important role in breed specific resistance to tropical theileriosis. The present study was designed to visualize the global gene expression profiling in PBMCs derived from indigenous (Tharparkar) and crossbred cattle with in vitro infection of T. annulata. T. annulata Parbhani strain, originally isolated from Maharashtra (India) and maintained as cryopreserved stabilates of ground-up tick tissue sporozoite (GUTS) of infected H. anatolicum anatolicum was used as infective material. Two separate microarray experiments were carried out using separately each for crossbred and Tharparkar cattle. The crossbred cattle showed 1082 differentially expressed genes (DEGs). Out of total DEGs, 597 genes were downregulated and 485 were upregulated. Their fold change varies from 2283.93 to -4816.02. Tharparkar cattle showed 875 differentially expressed genes. Out of total DEGs in Tharparkar cattle, 451 genes were downregulated and 424 genes were upregulated. Their fold change varies from 94.93 to -19.20. A subset of genes was validated by quantitative RT-PCR and results correlated well with data obtained from the microarrays indicating that the microarray results gave an accurate report of transcript level. Functional annotation study of differentially expressed genes has confirmed their involvement in various pathways including response to oxidative stress, immune system regulation, cell proliferation, cytoskeletal changes, kinases activity and apoptosis. Gene network analysis of these differentially expressed genes provided an effective way to understand the interaction among them. It is therefore, hypothesised that the dissimilar susceptibility to tropical theileriosis exhibited by indigenous and crossbred cattle is due to breed-specific differences in the interaction of infected cells with other immune cells, which ultimately influences the immune response generated against T. annulata infection.
Project description:We present the RNA-seq based transcriptome profile of ventral soft palate tissue from two Indian indigenous breeds (Malnad Gidda and Hallikar; Bos indicus) of cattle and Holstein Friesian (HF) crossbred calves. Differentially expressed gene pattern showed stronger innate immune response in the indigenous calves. We find that induction of innate and cell mediated immune response is associated with early viral clearance and mild form of foot-and-mouth disease.
Project description:Background: Transcriptomic variation among cattle breeds and their crossbreds may help to better understanding of consequences of crossbreeding and heterosis. In this study the differences in biological functions and pathways of three crossbreds including 50 and 75 percent Holstein were compared with their purebred parents, Holstein and Taleshi (an indigenous breed) cattle. Results: Five populations and their ten comparisons were studied by bioinformatics tools for transcriptome analysis. We pooled blood RNA of at least 8 animals of each population prior to RNA sequencing. The obtained results showed that total expressed transcripts in all populations were 72,812 with 22,627 annotated genes. Functional analysis of differentially expressed genes (DEGs) showed that the genetics information processing and metabolism were the most highly-impacted pathways. Among all significantly enriched pathways, eukaryotic translation initiation factor-2 signaling had the highest activation z-score (5.3) in crossbred compared to purebred cattle. The majority of upstream regulators of genes including transcription regulators and cytokines were differentially expressed among populations in which their activation z-score in purebred was more than crossbred cattle. Conclusions: Crossing of Holstein with Taleshi breed resulted in higher activity of pathways related to genetic information processing and lower activity of pathways related to immunity and inflammatory responses. To the best of our knowledge, this is the first study where the differences in pathways and functions were studied using high throughput sequencing of blood in a cattle crossbreeding program. The analysis revealed that the most important differences between studied genotypes, especially between purebred and crossbred cattle, were related to immune functions and metabolism.
Project description:The aim of the study was to identify genes which are differentially expressed in the peripheral blood nuclear cells of two breeds of cattle (Holstein-Friesian and Polish Red) and cervine in different points in their physiological states (dry-off period, peak of lactation) RNA from peripheral blood nuclear cells taken from cattle and cervine in peak lactation and dry period were hybridized to Agilent two color microarrays with a common reference. There were four Holstein-Friesian cattle, four Polish Red cattle and four deer investigated. The whole blood was drawn in two time point from each animal – during dry period and peak lactation. This means that there were six research groups (Holstein-Friesian cattle in dry period and Holstein-Friesian cattle in peak lactation; Polish Red cattle in dry period and Polish Red cattle in peak lactation; Deer in dry period and Deer in peak lactation). Using Gene Spring Software (one-way ANOVA and Tukey's HSD Post-hoc test) three lists of differentially expressed transcripts were obtained: a list of 576 transcripts which differ deer in dry period and in peak lactation, a list of 437 transcripts which differ Holstein-Friesian cattle in dry period and in peak lactation and a list of 158 transcripts which differ Polish Red cattle in dry period and in peak lactation.
Project description:This experiment was undertaken to document changes in gene expression in the skin of tick-resistant Brahman (Bos indicus) and tick-susceptible Holstein-Friesian (Bos taurus) cattle prior to, and following, infestation with the cattle tick Rhipicephalus (Boophilus) microplus Experiment Overall Design: RNA was extracted from skin samples of tick-naïve cattle (animals with no previous R.microplus exposure) and tick-infested cattle after a period of successive, heavy infestations with R. microplus. Skin samples taken from tick-infested animals were taken at sites where tick larvae (approximately 24 h old) were attached to the skin sample. Skin samples were of 8 mm diameter and full skin thickness (approximately 10 mm). RNA samples from 12 animals (3 tick-naive Holstein-Friesian, 3 tick-naive Brahman, 3 tick-infested Holstein-Friesian and 3 tick-infested Brahman) were processed and hybridised to individual slides.
Project description:This trial was undertaken to examine the perhipheral cellular and antibody response of cattle following infestation with the cattle tick, Rhipicephalus microplus. The information from the Affymetrix gene expression data is used to complement other measurements of immune function such as cellular subset composition and antibody response in cattle of high (Brahman) and low (Holstein-Friesian) resistance to the cattle tick. Experiment Overall Design: RNA was extracted from white blood cells during a period of successive, heavy infestations with R. microplus. RNA samples from 3 Holstein-Friesian and 3 Brahman animals were analysed on individual slides.
Project description:This experiment was undertaken to document changes in gene expression in the skin of tick-resistant Brahman (Bos indicus) and tick-susceptible Holstein-Friesian (Bos taurus) cattle prior to, and following, infestation with the cattle tick Rhipicephalus (Boophilus) microplus Keywords: Disease state analysis