Project description:Arthrobacter chlorophenolicus A6 is a 4-chlorophenol degrading soil bacterium with high phyllosphere colonization capacity. Till now the genetic basis for the phyllosphere competency of Arthrobacter or other pollutant-degrading bacteria is uncertain. We investigated global gene expression profile of A. chlorophenolicus grown in the phyllosphere of common bean (Phaseolus vulgaris) compared to growth on agar surfaces.
Project description:Arthrobacter chlorophenolicus A6 is a 4-chlorophenol degrading soil bacterium with high phyllosphere colonization capacity. Till now the genetic basis for the phyllosphere competency of Arthrobacter or other pollutant-degrading bacteria is uncertain. We investigated global gene expression profile of A. chlorophenolicus grown in the phyllosphere of common bean (Phaseolus vulgaris) compared to growth on agar surfaces. We designed transcriptome arrays and investigated which genes had different transcript levels in the phyllosphere of common bean (Phaseolus vulgaris) as compared to agar surfaces. Since water availability is considered an important factor in phyllosphere survival and activity, we included both high and low relative humidity treatments for the phyllosphere-grown cells. In addition, we determined the expression profile under pollutant exposure by the inclusion of two agar surface treatments, i.e. with and without 4-chlorophenol.
Project description:Adaptive divergence in wine yeasts and their wild relatives suggests a prominent role for introgressions and rapid evolution at non coding sites
Project description:BackgroundYeasts, which are ubiquitous in agroecosystems, are known to degrade various xenobiotics. The aim of this study was to analyze the effect of fungicides on the abundance of natural yeast communities colonizing winter wheat leaves, to evaluate the sensitivity of yeast isolates to fungicides in vivo, and to select yeasts that degrade propiconazole.ResultsFungicides applied during the growing season generally did not affect the counts of endophytic yeasts colonizing wheat leaves. Propiconazole and a commercial mixture of flusilazole and carbendazim decreased the counts of epiphytic yeasts, but the size of the yeast community was restored after 10 days. Epoxiconazole and a commercial mixture of fluoxastrobin and prothioconazole clearly stimulated epiphyte growth. The predominant species isolated from leaves were Aureobasidium pullulans and Rhodotorula glutinis. In the disk diffusion test, 14 out of 75 yeast isolates were not sensitive to any of the tested fungicides. After 48 h of incubation in an aqueous solution of propiconazole, the Rhodotorula glutinis Rg 55 isolate degraded the fungicide in 75%. Isolates Rh. glutinis Rg 92 and Rg 55 minimized the phytotoxic effects of propiconazole under greenhouse conditions. The first isolate contributed to an increase in the dry matter content of wheat seedlings, whereas the other reduced the severity of chlorosis.ConclusionNot sensitivity of many yeast colonizing wheat leaves on the fungicides and the potential of isolate Rhodotorula glutinis Rg 55 to degrade of propiconazole was established. Yeast may partially eliminate the ecologically negative effect of fungicides.
Project description:Transcriptome response of the yeasts C. glabrata and S. cerevisiae treated by an antifungal agent, benomyl Keywords: time course; stress response
Project description:Plants are colonized by a variety of microorganisms, the plant microbiota. In the phyllosphere, the above-ground parts of plants, bacteria are the most abundant inhabitants. Most of these microorganisms are not pathogenic and the plant responses to commensals or to pathogen infection in the presence of commensals are not well understood. We report the Arabidopsis leaf transcriptome after 3 to 4 weeks of colonization by Methylobacterium extorquens PA1 and Sphingomonas melonis Fr1, representatives of two abundant genera in the phyllosphere, compared to axenic plants. In addition, we also sequenced the transcriptome of Arabidopsis 2 and 7 days after spray-infection with a low dose of P. syringae DC3000 and in combination with the commensals.
Project description:Industrial wine yeast strains possess specific abilities to ferment under stressing conditions and give a suitable aromatic outcome. Although the fermentations properties of Saccharomyces cervisiae wine yeasts are well documented little is known on the genetic basis underlying the fermentation traits. Besides, although strain differences in gene expression has been reported, their relationships with gene expression variations and fermentation phenotypic variations is unknown. To both identify the genetic basis of fermentation traits and get insight on their relationships with gene expression variations, we combined fermentation traits QTL mapping and expression profiling in a segregating population from a cross between a wine yeast derivative and a laboratory strain.