Project description:Wheat seed germination is highly related to seedling survival rate and subsequent vegetative growth,and therefore directly affects the conformation of wheat yield and quality. So wheat seed germination is not only important to itself, but the whole human society. However, due to the large genome size, many studies related to wheat seed are very complex and uncompleted. Transcriptome analysis of elite Chinese bread wheat cultivar Jimai 20 may provides a comprehensive understanding of wheat seed germination. Seed germination involves in the regulation of large number of genes, whether these genes are normal activated or not is very important to seed germination. We performed microarray analysis using the Affymetrix Gene Chip to reveal the gene expression profiles in five phases of wheat cultivar Jimai 20 seed germination. Our results provide a new insights into the thoroughly metabolic changes of seed germination as well as the relationship between some significant genes.
Project description:Wheat seed germination is highly related to seedling survival rate and subsequent vegetative growth,and therefore directly affects the conformation of wheat yield and quality. So wheat seed germination is not only important to itself, but the whole human society. However, due to the large genome size, many studies related to wheat seed are very complex and uncompleted. Transcriptome analysis of elite Chinese bread wheat cultivar Jimai 20 may provides a comprehensive understanding of wheat seed germination. Seed germination involves in the regulation of large number of genes, whether these genes are normal activated or not is very important to seed germination. We performed microarray analysis using the Affymetrix Gene Chip to reveal the gene expression profiles in five phases of wheat cultivar Jimai 20 seed germination. Our results provide a new insights into the thoroughly metabolic changes of seed germination as well as the relationship between some significant genes. The five groups including germinating seeds were harvest at five successive phases, which were 0 (P0), 12 (P1), 24 (P2), 36 (P3), 48 (P4) hour after imbibition respectively. Three independent experiments were performed for each group.
Project description:Wheat seed development is a very important stage in the cereal crops seed life cycle. The accumulation reserves of wheat mature seeds provide not only the food for human and livestock feed, but also the energy for the seed germination.However, due to the large genome size, many studies related to wheat seed are very complex and uncompleted. Transcriptome analysis of elite Chinses bread wheat cultivar Jimai 20 may provides a comprehensive understanding of wheat seed development. Seed development involves in the regulation of large number of genes, whether these genes are normal activated or not is very important to seed development. We performed microarray analysis using the Affymetrix Gene Chip to reveal the gene expression profiles in the phases of wheat cultivar Jimai 20 grain filling. Our results provide a new insights into the thoroughly metabolic changes of seed development as well as the key differentially expressed genes involved in wheat grain development.
Project description:We have employed whole genome microarray expression profiling as a discovery platform to identify genes to alter the transcript accumulation levels in grass-clump dwarf lines, which are synthetic hexaploid lines from triploid hybrids crossed between tetraploid wheat (Triticum turgidum ssp. durum cv. Langdon or T. turgidum ssp. carthlicum) and diploid wheat progenitor Aegilops tauschii (KU2025). No up-regulation of defense-related genes was observed under the normal temperature, and down-regulation of wheat APETALA1-like MADS-box genes, considered to act as flowering promoters, was found in the grass-clump dwarf lines. Together with small RNA sequencing analysis of the grass-clump dwarf line, unusual expression of the miR156/SPLs module could explain the grass-clump dwarf phenotype.
Project description:Wheat seed germination directly affects wheat yield and quality. The wheat grains mainly include embryo and endosperm, and both play important roles in seed germination, seedling survival and subsequent vegetative growth. ABA can positively regulate dormancy induction and then negatively regulates seed germination at low concentrations. H2O2 treatment with low concentration can promote seed germination of cereal plants. Although various transcriptomics and proteomics approaches have been used to investigate the seed germination mechanisms and response to various abiotic stresses in different plant species, an integrative transcriptome analysis of wheat embryo and endosperm response to ABA and H2O2 stresses has not reported so far. We used the elite Chinese bread wheat cultivar Zhenmai 9023 as material and performed the first comparative transcriptome microarray analysis between embryo and endosperm response to ABA and H2O2 treatments during seed germination using the GeneChip® Wheat Genome Array Wheat seed germination includes a great amount of regulated genes which belong to many functional groups. ABA/H2O2 can repress/promote seed germination through coordinated regulating related genes expression. Our results provide new insights into the transcriptional regulation mechanisms of embryo and endosperm response to ABA and H2O2 treatments during seed germination
Project description:Background: Evolutionary engineering is a powerful approach to isolate suppressor mutants and industrially relevant genotypes. Until recently, DNA microarray analysis was the only affordable genome-wide approach to identify the responsible mutations. This situation has changed due to the rapidly decreasing costs of whole genome (re)sequencing. DNA microarray-based mRNA expression analysis and whole genome resequencing were combined in a study on lactate transport in Saccharomyces cerevisiae. Jen1p is the only S. cerevisiae lactate transporter reported in literature. To identify alternative lactate transporters, a jen1Δ strain was evolved for growth on lactate. Results: Two independent evolution experiments yielded Jen1p-independent growth on lactate (μmax 0.14 and 0.18 h-1 for single-cell lines IMW004 and IMW005, respectively). Whereas mRNA expression analysis did not provide leads, whole-genome resequencing showed different single nucleotide changes (C755G/Leu219Val and C655G/Ala252Gly) in the acetate transporter gene ADY2. Analysis of mRNA levels and depth of coverage of DNA sequencing combined with karyotyping, gene deletions and diagnostic PCR showed that in IMW004 an isochromosome III (~475 kb), which contains two additional copies of ADY2C755G, was formed via crossover between YCLWΔ15 and YCRCΔ6. Introduction of the ADY2 alleles in a jen1 ady2 strain resulted in growth on lactate (μmax 0.14 h-1 for Ady2pLeu219Val and 0.12 h-1 for Ady2pAla252Gly). Conclusions: Whole-genome resequencing of yeast strains obtained from independent evolution experiments enabled rapid identification of a key gene that was not identified by mRNA expression analysis of the same strains. Reverse metabolic engineering showed that mutated alleles of ADY2 (C655G and C755G) encode efficient lactate transporters.
Project description:Whole-genome resequencing of eight transcription factor mutants and one wild-type, in order to verify the T-DNA insertion site and its uniqueness.