Project description:The spatio-temporal program of genome replication across eukaryotes is thought to be driven both by the uneven loading of pre-replication complexes (pre-RCs) across the genome at the onset of S-phase, and by differences in the timing of activation of these complexes during S-phase. To determine the degree to which distribution of pre-RC loading alone could account for chromosomal replication patterns, we mapped the binding sites of the Mcm2-7 helicase complex (MCM) in budding yeast, fission yeast, mouse and humans. We observed identical individual MCM double-hexamer (DH) footprints across the species, but notable differences in their distribution. Nonetheless, most fluctuations in replication timing in all four organisms could be accounted for by differences in chromosomal MCM distribution. We conclude that, although certain genomic regions, most notably the inactive X-chromosome, are subject to post-licensing regulation, most differences in replication timing along the chromosome reflect uneven chromosomal distribution of stochastically firing pre-replication complexes.
Project description:Fourteen yeast mutants with an extended S-phase were identified by a novel genome-wide screen. These mutants are associated with the DNA replication machinery, cell-cycle control and dNTP synthesis. We determined the genome-wide DNA replication timing profile of all these mutants as well as wild type, by FACS-sorting G1- and S-phase cells and co-hybridizing their DNA to Agilent genomic tiling arrays, in four repeats each. We find that MRC1 is required for scaling of the DNA replication timing program upon replication perturbation.
Project description:In S. cerevisiae, replication timing is controlled by epigenetic mechanisms restricting the accessibility of origins to limiting initiation factors. About 30% of these origins are located within repetitive DNA sequences such as the ribosomal DNA (rDNA) array, but their regulation is poorly understood. Here, we have investigated how histone deacetylases (HDACs) control the replication program in budding yeast. This analysis revealed that two HDACs, Rpd3 and Sir2, control replication timing in an opposite manner. Whereas Rpd3 delays initiation at late origins, Sir2 is required for the timely activation of early origins. Moreover, Sir2 represses initiation at rDNA origins whereas Rpd3 counteracts this effect. Remarkably, deletion of SIR2 restored normal replication in rpd3 cells by reactivating rDNA origins. Together, these data indicate that HDACs control the replication timing program in budding yeast by modulating the ability of repeated origins to compete with single-copy origins for limiting initiation factors. BrdU-IP-chip analysis of origin usage in different yeast HDAC mutants
Project description:In S. cerevisiae, replication timing is controlled by epigenetic mechanisms restricting the accessibility of origins to limiting initiation factors. About 30% of these origins are located within repetitive DNA sequences such as the ribosomal DNA (rDNA) array, but their regulation is poorly understood. Here, we have investigated how histone deacetylases (HDACs) control the replication program in budding yeast. This analysis revealed that two HDACs, Rpd3 and Sir2, control replication timing in an opposite manner. Whereas Rpd3 delays initiation at late origins, Sir2 is required for the timely activation of early origins. Moreover, Sir2 represses initiation at rDNA origins whereas Rpd3 counteracts this effect. Remarkably, deletion of SIR2 restored normal replication in rpd3 cells by reactivating rDNA origins. Together, these data indicate that HDACs control the replication timing program in budding yeast by modulating the ability of repeated origins to compete with single-copy origins for limiting initiation factors.
Project description:In S. cerevisiae, replication timing is controlled by epigenetic mechanisms restricting the accessibility of origins to limiting initiation factors. About 30% of these origins are located within repetitive DNA sequences such as the ribosomal DNA (rDNA) array, but their regulation is poorly understood. Here, we have investigated how histone deacetylases (HDACs) control the replication program in budding yeast. This analysis revealed that two HDACs, Rpd3 and Sir2, control replication timing in an opposite manner. Whereas Rpd3 delays initiation at late origins, Sir2 is required for the timely activation of early origins. Moreover, Sir2 represses initiation at rDNA origins whereas Rpd3 counteracts this effect. Remarkably, deletion of SIR2 restored normal replication in rpd3 cells by reactivating rDNA origins. Together, these data indicate that HDACs control the replication timing program in budding yeast by modulating the ability of repeated origins to compete with single-copy origins for limiting initiation factors.
Project description:In S. cerevisiae, replication timing is controlled by epigenetic mechanisms restricting the accessibility of origins to limiting initiation factors. About 30% of these origins are located within repetitive DNA sequences such as the ribosomal DNA (rDNA) array, but their regulation is poorly understood. Here, we have investigated how histone deacetylases (HDACs) control the replication program in budding yeast. This analysis revealed that two HDACs, Rpd3 and Sir2, control replication timing in an opposite manner. Whereas Rpd3 delays initiation at late origins, Sir2 is required for the timely activation of early origins. Moreover, Sir2 represses initiation at rDNA origins whereas Rpd3 counteracts this effect. Remarkably, deletion of SIR2 restored normal replication in rpd3 cells by reactivating rDNA origins. Together, these data indicate that HDACs control the replication timing program in budding yeast by modulating the ability of repeated origins to compete with single-copy origins for limiting initiation factors.
Project description:This experiment details ChIP sequencing to decipher the binding sites of the Rif1 protein in budding yeast. Rif1 binds most strongly to telomeres where its binding is mediated by Rap1. To reduce telomere binding and help reveal Rap1-independent binding sites, a truncation mutant of Rif1 lacking the Rap1 interaction domain was constructed and analysed. Binding was examined at various cell-cycle stages to elucidate the role of Rif1 in DNA replication and other chromosome transactions.
Project description:In S. cerevisiae, replication timing is controlled by epigenetic mechanisms restricting the accessibility of origins to limiting initiation factors. About 30% of these origins are located within repetitive DNA sequences such as the ribosomal DNA (rDNA) array, but their regulation is poorly understood. Here, we have investigated how histone deacetylases (HDACs) control the replication program in budding yeast. This analysis revealed that two HDACs, Rpd3 and Sir2, control replication timing in an opposite manner. Whereas Rpd3 delays initiation at late origins, Sir2 is required for the timely activation of early origins. Moreover, Sir2 represses initiation at rDNA origins whereas Rpd3 counteracts this effect. Remarkably, deletion of SIR2 restored normal replication in rpd3 cells by reactivating rDNA origins. Together, these data indicate that HDACs control the replication timing program in budding yeast by modulating the ability of repeated origins to compete with single-copy origins for limiting initiation factors. MNase-seq analysis of nucleosome position in wt, sir2 and rpd3 cells, aligned against genomic DNA (sacCer3; *sorted_s3.bed) and rDNA sequences (*rdna_nucleosomes.bed)