Project description:To explore underlying mechanisim of which Cald1 regulates osteogenic differentiation of PDLSCs, RNA -seq was performed on PDLSCs treated with NC shRNA and Cald1 shRNA respectively.
Project description:In this project the researchers wanted to estabslish the association of GLP1R and GIPR single nucleotide variants with obesity and its comorbidities.
Project description:To study the molecular mechanisms underlying PDLSC osteogenic differentiation, we developed RNA sequencing with Illumina HiSeq2000 to comprehensively identify RNA expression profiles in normal PDLSCs, osteogenic inductive PDLSCs and mechanical force-induced PDLSCs. Plenty of RNAs were found to be differentially expressed by RNA sequencing. Furthermore, the potential functions of these RNAs were investigated using bioinformatic analysis.
Project description:Glucagon-like peptide-1 receptor (GLP1R) agonists target the GLP1R, whereas dual GLP1R/ gastric inhibitory polypeptide receptor (GIPR) agonists target both the GLP1R and GIPR. Despite the importance of these drug classes for the treatment of diabetes and obesity, still very little is known about the localization of GLP1R and GIPR themselves. Complicating matters is the low abundance of GLP1R and GIPR mRNA/protein, as well as a lack of specific and validated reagents for their detection. Without knowing where GLP1R and GIPR are located, it is difficult to propose mechanisms of action in the various target organs, and whether this is indirect or direct. In the current review, we will explain the steps needed to properly validate reagents for endogenous GLP1R/GIPR detection, describe the available approaches to visualize GLP1R/GIPR, and provide an update on the state-of-art. The overall aim is to provide a reference resource for researchers interested in GLP1R and GIPR signaling.
Project description:Agonists and antagonists of the glucose-dependent insulinotropic polypeptide receptor (GIPR) enhance body weight loss induced by glucagon-like peptide-1 receptor (GLP-1R) agonism. However, while GIPR agonism decreases body weight and food intake in a GLP-1R-independent manner via GABAergic GIPR+ neurons, it remains unclear whether GIPR antagonism affects energy metabolism via a similar mechanism. Here we show that the body weight and food intake effects of GIPR antagonism are eliminated in mice with global loss of either Gipr or Glp-1r but are preserved in mice with loss of Gipr in either GABAergic neurons of the central nervous system or peripherin-expressing neurons of the peripheral nervous system. Single-nucleus RNA-sequencing shows opposing effects of GIPR agonism and antagonism in the dorsal vagal complex, with antagonism, but not agonism, closely resembling GLP-1R signalling. Additionally, GIPR antagonism and GLP-1R agonism both regulate genes implicated in synaptic plasticity. Collectively, we show that GIPR agonism and antagonism decrease body weight via different mechanisms, with GIPR antagonism, unlike agonism, depending on functional GLP-1R signalling.
Project description:Central glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) signalling is critical for GIP-based therapeutics to lower body weight, but pathways leveraged by GIPR agonism pharmacology in the brain remain incompletely understood. We explored the role of Gipr neurons in the hypothalamus and dorsal vagal complex (DVC)—brain regions critical to the control of energy balance. Hypothalamic expression of Gipr expression was not necessary for the synergistic effect of GIPR/ agonism combined with GLP-1R co-agonism on body weight. While chemogenetic stimulation of both hypothalamic and DVC Gipr neurons suppressed food intake, activation of DVC Gipr neurons reduced ambulatory activity and induced conditioned taste avoidance, while there was no effect of a short-acting GIPR agonist (SAGIPRA). Within the DVC, Gipr neurons of the nucleus tractus solitarius (NTS), but not the area postrema (AP), projected to the parabrachial nucleus and paraventricular hypothalamic nucleusdistal brain regions. ScRNAseq and FISH analysis showed that Gipr neurons in the NTS and AP Gipr neurons were transcriptomically distinct. Peripherally-dosed fluorescent GIPR agonists (GIPRAs) revealed that GIPRA access was restricted to circumventricular organs in the CNS. Together tThese data demonstrate that while the hypothalamus, AP and NTS are key sites for Gipr expression, these subpopulations of Gipr neurons in the hypothalamus, AP and NTS differ in their connectivity, transcriptomic profile, peripheral accessibility to peripherally administered GIPRAs, and the appetite controlling pathways they employ. These results highlight the heterogeneity of the central GIPR signalling axis, and suggest that studies aimed at understandinginto the effects of GIP pharmacology on feeding behaviour should consider the interplay of multiple regulatory pathways.