Project description:In this study, we used the illumina high throughput sequencing approach (Sequencing-By-Synthesis, or SBS) to develop the sequence resource of black pepper. To identify micro RNAs functioning in stress response of the black pepper plant, small RNA libraries were prepared from the leaf and root of Phytophthora capsici infected plants, leaves from drought stressed and control plants.
Project description:Purpose: MicroRNAs (miRNAs) play important roles in many biological processes by regulating gene expression at the post-transcriptional level. However, the mechanism by which specific miRNAs may regulate plumage pigmentation has remained largely elusive. In this study, we sequenced miRNAs using Solexa sequencing and then performed a detailed analysis of their expression profiles between the black and white feather bulbs of ducks. This study provides the foundation for subsequent studies on the prospective practical role for such miRNAs in post-transcriptional gene regulation linked to plumage pigmentation.
Project description:Sesame seeds is an important traditional crop with high oil content and other abundant nutrients which are very beneficial for diet and health of human being. However, the molecular mechanism for metabolite accumulation, especially for oil and phenylpropanoid biosynthesis, is still not very clear in sesame. In this study, the transcriptome profiles of black and white sesame seeds were compared by RNA-sequencing. Transcriptome analysis showed that the expression patterns of genes encoding phenylpropanoid pathway enzymes were different between the two sesame cultivars. Compared with white sesame, most of genes involved in oil biosynthesis were significantly down-regulated in black sesame.
Project description:The coat color of mammals is determined by the melanogenesis pathway, which is responsible for maintaining the balance between black-brown eumelanin and yellow-reddish phaeomelanin. It is also believed that the color of the bovine nose is regulated in a similar manner; however, the molecular mechanism underlying pigment deposition in the black nose has yet to be elucidated. The aim of the present study was to identify melanogenesis-associated genes that are differentially expressed in the black vs. yellow nose of native Korean cows. Experiment, Yellow nose vs. Black nose HanWoo
Project description:The coat color of mammals is determined by the melanogenesis pathway, which is responsible for maintaining the balance between black-brown eumelanin and yellow-reddish phaeomelanin. It is also believed that the color of the bovine nose is regulated in a similar manner; however, the molecular mechanism underlying pigment deposition in the black nose has yet to be elucidated. The aim of the present study was to identify melanogenesis-associated genes that are differentially expressed in the black vs. yellow nose of native Korean cows.
Project description:In pancreatic cancer clinical trials, Black patients are under-represented while having higher morbidity and mortality rates as compared to other racial groups. Multiple factors, including socioeconomic and lifestyle factors may contribute to this disparity, but genomic contributions remain unclear. In an exploratory project to identify genes that may contribute to differences in survival between Black and White patients with pancreatic cancer, transcriptomic sequencing of over 24,900 genes was performed in human pancreatic tumor and non-tumor tissue obtained from Black and White patients. Over 4,400 genes were differentially expressed in tumor and non-tumor tissue, irrespective of race. Of these 4,400 genes, four (AGR2, POSTN, TFF1, and CP) met the pre-defined statistical threshold for upregulation in pancreatic tumor tissue; these findings were confirmed by quantitative PCR. Transcriptomic analysis of pancreatic tumor tissue in Black and White patients revealed differential expression in 1,200 genes. Non-tumor and tumor gene expression differences within each race were assessed, revealing over 1,500 tumor-specific differentially expressed genes in pancreatic tumor and non-tumor tissue from Black patients. We identified TSPAN8 as a potential tumor-specific gene significantly overexpressed in pancreatic tumor tissue in Black patients as compared to White patients. Using Ingenuity Pathway Analysis software to compare the race-associated gene expression profiles, over 40 canonical pathways were identified to be potentially impacted by the gene expression differences between the races. Heightened expression of TSPAN8 was associated with poor overall survival, suggesting TSPAN8 as one potential genetic factor contributing to the differential outcomes in Black patients with pancreatic cancer, supporting the potential utility of larger genomic studies to further explore the role of TSPAN8 in pancreatic cancer.