Project description:Microbial density and diversity increase in distal intestinal segments, affecting tissue physiology, metabolism, and function of both the immune and nervous systems. We characterized the influence of the microbiota on murine intrinsic enteric-associated neurons (iEAN). We found that iEAN are functionally adapted to the intestinal segment they occupy, with a stronger microbiota influence on ileal and colonic neurons. Chemogenetic characterization of microbiota-influenced iEAN identified a subset of viscerofugal CART+ neurons, enriched in the ileum and colon, able to modulate feeding and glucose metabolism. Retro- and anterograde tracing revealed that CART+ viscerofugal neurons send axons to the prevertebral ganglia and are poly-synaptically connected to the liver and pancreas. Microbiota depletion led to NLRP6 and Caspase 11-dependent loss of CART+ neurons, and impaired liver-mediated gluconeogenesis. Our results demonstrate a region-specific adaptation of enteric neurons and indicate that iEAN subsets are capable of regulating blood glucose levels independently from the central nervous system.
Project description:The enteric nervous system (ENS) senses microbiota-derived signals and orchestrates mucosal immunity and epithelial barrier functions, in health and disease. However, mechanistic dissections of intestinal neuro-immune-microbiota communications remain challenging and existing research methods limit experimental controllability and throughput. Here, we present a novel optogenetics-integrated gut organ culture system that enables real-time, whole-tissue stimulation of specific ENS lineages, allowing for detailed analysis of their functional impact. We demonstrate that optogenetic activation of enteric cholinergic neurons rapidly modulates intestinal physiology. Interestingly, distinct neuronal firing patterns differentially modulate neuro-immunological gene expression and epithelial barrier integrity. Furthermore, diverse enteric neuronal lineages exert distinct regulatory roles. While cholinergic activation promotes gene-sets associated with type-2 immunity, tachykininergic enteric neurons differentially control mucosal defense programs. Remarkably, luminal introduction of the immunomodulatory bacterium T. ramosa significantly remodeled cholinergic-induced neuro-immunological transcription. These findings suggest that complex combinatorial signals delivered by gut microbes and enteric neurons are locally integrated to fine-tune intestinal immunity and barrier defense. Collectively, we provide a powerful platform for systematic discovery and mechanistic exploration of functional neuroimmune connections, and their potential modulation by microbes, drugs or metabolites.
Project description:The enteric nervous system (ENS) senses microbiota-derived signals and orchestrates mucosal immunity and epithelial barrier functions, in health and disease. However, mechanistic dissections of intestinal neuro-immune-microbiota communications remain challenging and existing research methods limit experimental controllability and throughput. Here, we present a novel optogenetics-integrated gut organ culture system that enables real-time, whole-tissue stimulation of specific ENS lineages, allowing for detailed analysis of their functional impact. We demonstrate that optogenetic activation of enteric cholinergic neurons rapidly modulates intestinal physiology. Interestingly, distinct neuronal firing patterns differentially modulate neuro-immunological gene expression and epithelial barrier integrity. Furthermore, diverse enteric neuronal lineages exert distinct regulatory roles. While cholinergic activation promotes gene-sets associated with type-2 immunity, tachykininergic enteric neurons differentially control mucosal defense programs. Remarkably, luminal introduction of the immunomodulatory bacterium T. ramosa significantly remodeled cholinergic-induced neuro-immunological transcription. These findings suggest that complex combinatorial signals delivered by gut microbes and enteric neurons are locally integrated to fine-tune intestinal immunity and barrier defense. Collectively, we provide a powerful platform for systematic discovery and mechanistic exploration of functional neuroimmune connections, and their potential modulation by microbes, drugs or metabolites.
Project description:The enteric nervous system (ENS) senses microbiota-derived signals and orchestrates mucosal immunity and epithelial barrier functions, in health and disease. However, mechanistic dissections of intestinal neuro-immune-microbiota communications remain challenging and existing research methods limit experimental controllability and throughput. Here, we present a novel optogenetics-integrated gut organ culture system that enables real-time, whole-tissue stimulation of specific ENS lineages, allowing for detailed analysis of their functional impact. We demonstrate that optogenetic activation of enteric cholinergic neurons rapidly modulates intestinal physiology. Interestingly, distinct neuronal firing patterns differentially modulate neuro-immunological gene expression and epithelial barrier integrity. Furthermore, diverse enteric neuronal lineages exert distinct regulatory roles. While cholinergic activation promotes gene-sets associated with type-2 immunity, tachykininergic enteric neurons differentially control mucosal defense programs. Remarkably, luminal introduction of the immunomodulatory bacterium T. ramosa significantly remodeled cholinergic-induced neuro-immunological transcription. These findings suggest that complex combinatorial signals delivered by gut microbes and enteric neurons are locally integrated to fine-tune intestinal immunity and barrier defense. Collectively, we provide a powerful platform for systematic discovery and mechanistic exploration of functional neuroimmune connections, and their potential modulation by microbes, drugs or metabolites.
Project description:The enteric nervous system (ENS) can control most essential gut functions owing to its organization into complete neural circuits consisting of a multitude of different neuronal subtypes. We used microarrays to identify transcription factor networks and signaling pathways involved in diversification and differentiation of enteric neurons during development of the enteric nervous system.
Project description:Enteric nervous system is involved in the regulation of intestinal inflammation. We developped mouse primary cultures of enteric nervous system to study impact of LPS, as pro-inflammatory mediator, and of the pro-drug 6-mercaptopurine on enteric inflammatory pathways We used microarrays to detail the global programme of gene expression underlying enteric neuro-inflammation and identified classes of up-regulated genes during this process.
Project description:We used single nuclei RNA sequencing (snRNA-seq) for molecular characterization of our hPSC-derived enteric nervous system models termed enteric ganglioids.
Project description:We used single cell RNA sequencing (scRNA-seq) for molecular characterization of our hPSC-derived enteric crestosphere and 2D enteric nervous system models
Project description:Gastrointestinal microbes modulate peristalsis and stimulate the enteric nervous system (ENS), whose development, as in the central nervous system (CNS), continues into the murine postweaning period. Given that adult CNS function depends on stimuli received during critical periods of postnatal development, we hypothesized that adult ENS function, namely motility, depends on microbial stimuli during similar critical periods. We gave fecal microbiota transplantation (FMT) to germ-free mice at weaning or as adults and found that only the mice given FMT at weaning recovered normal transit, while those given FMT as adults showed limited improvements. RNAseq of colonic muscularis propria revealed enrichments in neuron developmental pathways in mice exposed to gut microbes earlier in life, while mice exposed later – or not at all – showed exaggerated expression of inflammatory pathways. These findings highlight a microbiota-dependent sensitive period in ENS development, pointing to potential roles of the early life microbiome in later life dysmotility.