Project description:.RAW files and Compound Discoverer peak lists used for a manuscript regarding changes the chemical fingerprint of sewage sludge during the COVID-19 pandemic
Project description:The aim of this work was to study the effects of Fe and Mn deficiencies and Mn toxicity on the protein profile of the xylem sap of tomato (Solanum lycopersicum), with the aim of elucidating plant response mechanisms to these nutritional stresses. Tomato was chosen as a model plant because the tomato genome has been published and this plant species has adequate root pressure and turgid stems that permit xylem sap sampling in sufficient amounts by de-topping. The high-throughput shotgun analysis has permitted to identify and quantitate a large number of low abundance proteins in the tomato xylem sap.
Project description:The aim of this work was to study the effects of Mn excess on the protein profile of the xylem sap of tomato (Solanum lycopersicum), with the aim of elucidating plant response mechanisms to these nutritional stresses. Tomato was chosen as a model plant because the tomato genome has been published and this plant species has adequate root pressure and turgid stems that permit xylem sap sampling in sufficient amounts by de-topping. The high- throughput shotgun analysis has permitted to identify and quantitate a large number of low abundance proteins in the tomato xylem sap.
Project description:Manufactured nanomaterials (MNMs) are increasingly incorporated into consumer products that are disposed into sewage. In wastewater treatment, MNMs adsorb to activated sludge biomass where they may impact biological wastewater treatment performance, including nutrient removal. Here, we studied MNM effects on bacterial polyhydroxyalkanoate (PHA), specifically polyhydroxybutyrate (PHB), biosynthesis because of its importance to enhanced biological phosphorus (P) removal (EBPR). Activated sludge was sampled from an anoxic selector of a municipal wastewater treatment plant (WWTP), and PHB-containing bacteria were concentrated by density gradient centrifugation. After starvation to decrease intracellular PHB stores, bacteria were nutritionally augmented to promote PHB biosynthesis while being exposed to either MNMs (TiO2 or Ag) or to Ag salts (each at a concentration of 5 mg L-1). Cellular PHB concentration and PhyloChip community composition were analyzed. The final bacterial community composition differed from activated sludge, demonstrating that laboratory enrichment was selective. Still, PHB was synthesized to near-activated sludge levels. Ag salts altered final bacterial communities, although MNMs did not. PHB biosynthesis was diminished with Ag (salt or MNMs), indicating the potential for Ag-MNMs to physiologically impact EBPR through the effects of dissolved Ag ions on PHB producers.
2014-12-03 | GSE63781 | GEO
Project description:Microplastics exhibit accumulation and horizontal transfer of antibiotic resistance genes
Project description:Manufactured nanomaterials (MNMs) are increasingly incorporated into consumer products that are disposed into sewage. In wastewater treatment, MNMs adsorb to activated sludge biomass where they may impact biological wastewater treatment performance, including nutrient removal. Here, we studied MNM effects on bacterial polyhydroxyalkanoate (PHA), specifically polyhydroxybutyrate (PHB), biosynthesis because of its importance to enhanced biological phosphorus (P) removal (EBPR). Activated sludge was sampled from an anoxic selector of a municipal wastewater treatment plant (WWTP), and PHB-containing bacteria were concentrated by density gradient centrifugation. After starvation to decrease intracellular PHB stores, bacteria were nutritionally augmented to promote PHB biosynthesis while being exposed to either MNMs (TiO2 or Ag) or to Ag salts (each at a concentration of 5 mg L-1). Cellular PHB concentration and PhyloChip community composition were analyzed. The final bacterial community composition differed from activated sludge, demonstrating that laboratory enrichment was selective. Still, PHB was synthesized to near-activated sludge levels. Ag salts altered final bacterial communities, although MNMs did not. PHB biosynthesis was diminished with Ag (salt or MNMs), indicating the potential for Ag-MNMs to physiologically impact EBPR through the effects of dissolved Ag ions on PHB producers. 18 samples; Triplicate PHB-enriched bacterial communities recovered from activated sludge were exposed to nanoparticle (TiO2 or Ag) or AgNO3 (as a silver control) or were not exposed to an nanoparticles (control) to determine if the naoparticles affected PHB production.