Project description:Plant growth-promoting rhizobacteria (PGPR) are soil beneficial microorganisms that colonize plant roots for nutritional purposes and accordingly benefit plants by increasing plant growth or reducing disease. But it still remains unclear which mechanisms or pathways are involved in the interactions between PGPR and plants. To understand the complex plant-PGPR interactions, the changes in the transcriptome of typical PGPR standard Bacillus subtilis in responding to rice seedlings were analyzed.
Project description:Plant growth-promoting rhizobacteria (PGPR) are soil beneficial microorganisms that colonize plant roots for nutritional purposes and accordingly benefit plants by increasing plant growth or reducing disease. But it still remains unclear which mechanisms or pathways are involved in the interactions between PGPR and plants. To understand the complex plant-PGPR interactions, the changes in the transcriptome of typical PGPR standard Bacillus subtilis in responding to rice seedlings were analyzed. We compared and anylyzed the transcriptome changes of the bacteria Bacillus subtilis OKB105 in response to rice seedings for 2 h. Total RNA was extracted and Random priming cDNA synthesis, cDNA fragmentation and terminal labeling with biotinylated GeneChip DNA labeling reagent, and hybridization to the Affymetrix GeneChip Bacillus subtilis Genome Array.
Project description:Plant growth-promoting rhizobacteria (PGPR) are soil microbes that can promote plant growth and/or increase plant resistance to one or multiple stress conditions. These natural resources are environmentally friendly tools for reducing the use of chemical fertilizers and pesticides and for improving the nutritional quality of plants, including pharmacological metabolites. Coriander (Coriandrum sativumL.), commonly known as cilantro or Chinese parsley, is a worldwide culinary and medicinal plant with both nutritional and medicinal properties. Little is known about how PGPR may promote plant growth or affect metabolite profiles in coriander. Here, by usingAeromonassp. H1 that is a PGPR strain, we investigate how coriander yield and quality could be affected by PGPR with transcriptome insights.
Project description:In the present investigation, the genetic diversity architecture of 96 deep-water rice genotypes of Assam and association mapping strategy was, for the first time, applied to determine the significant SNPsand genes for deep-water rice. These genotypes are known for their unique elongation ability under deep-water condition.The internode elongation under water related genes will be identified here can provide affluent resources for rice breeding especially in flood-prone areas. We investigated the genome-wide association studies (GWAS) using 50 K rice genic SNPchip across 96 deep-water rice genotypes collected from different flood-prone districts/villages of Assam.
Project description:Rhizosphere bacteria, whether phytopathogenic or phytobeneficial, are thought to be perceived by the plant as a threat. Plant Growth-Promoting Rhizobacteria (PGPR), such as many strains of the Azospirillum genus known as the main phytostimulator of cereals, cooperate with host plants and favorably affect their growth and health. An earlier study of rice root transcriptome, undertaken with two rice cultivars and two Azospirillum strains, revealed a strain-dependent response during the rice-Azospirillum association and showed that only a few genes, including some implicated in plant defense, were commonly regulated in all tested conditions. Here, a set of genes was selected from previous studies and their expression was monitored by qRT-PCR in rice roots inoculated with ten PGPR strains isolated from various plants and belonging to various genera (Azospirillum, Herbaspirillum, Paraburkholderia). A common expression pattern was highlighted for four genes that are proposed to be markers of the rice-PGPR interaction: two genes involved in diterpenoid phytoalexin biosynthesis (OsDXS3 and OsDTC2) and one coding for an uncharacterized protein (Os02g0582900) were significantly induced by PGPR whereas one defense-related gene encoding a pathogenesis-related protein (PR1b, Os01g0382000) was significantly repressed. Interestingly, exposure to a rice bacterial pathogen also triggered the expression of OsDXS3 while the expression of Os02g0582900 and PR1b was down-regulated, suggesting that these genes might play a key role in rice-bacteria interactions. Integration of these results with previous data led us to propose that the jasmonic acid signaling pathway might be triggered in rice roots upon inoculation with PGPR.
Project description:This SuperSeries is composed of the following subset Series: GSE21396: Spatio-temporal gene expression of various tissues/organs throughout entire growth in rice GSE21397: Continuous gene expression profile of leaf throughout the entire growth in rice GSE21398: Comparison of gene expression profile of flag leaf from fertile and sterile lines of rice Refer to individual Series
Project description:Sorghum (Sorghum bicolor) is one of the world's most important cereal crops. S. propinquum is a perennial wild relative of S. bicolor with well-developed rhizomes. Functional genomics analysis of S. propinquum, especially with respect to molecular mechanisms related to rhizome growth and development, can contribute to the development of more sustainable grain, forage, and bioenergy cropping systems. In this study, we used a whole rice genome oligonucleotide microarray to obtain tissue-specific gene expression profiles of S. propinquum with special emphasis on rhizome development. A total of 548 tissue-enriched genes were detected, including 31 and 114 unique genes that were predominantly expressed in the rhizome tips (RT) and internodes (RI), respectively. Further GO analysis indicated that the functions of these tissue-enriched genes corresponded to their characteristic biological processes. A few distinct cis-elements, including ABA-responsive RY repeat CATGCA, sugar-repressive TTATCC, and GA-responsive TAACAA, were found to be prevalent in RT-enriched genes, implying an important role in rhizome growth and development. Comprehensive comparative analysis of these rhizome-enriched genes and rhizome-specific genes previously identified in S. propinquum indicated that phytohormones, including ABA, GA, and SA, are key regulators of gene expression during rhizome development. Co-localization of rhizome-enriched genes with rhizome-related QTLs in rice and sorghum generated functional candidates for future cloning of genes associated with rhizome growth and development. In conclusion, a whole rice genome oligonucleotide microarray was used to profile gene expression across five tissues of the perennial wild sorghum S. propinquum. Expression patterns of the five tissues were consistent with the different functions of each organ, and RT- and RI-enriched genes revealed clues regarding molecular mechanisms of rhizome development. Plant hormones, including ABA, GA, and SA, function as key regulators of rhizome gene expression and development. To shed further light on the identities of rhizome-specific genes, rhizome-enriched candidates were identified using QTL co-localization and comparative analysis. In this study, the specific gene expression patterns across five tissues, including rhizome tip (RT, distal 1 cm of the young rhizome), rhizome internodes (RI), shoot tip (ST, distal 5 mm of the tiller after removing all leaves), shoot internodes (SI) and young leaf (YL) in Sorghum propinquum, especially in the rhizome, were characterized by using a rice genome array. Three independent biological replicates for each tissue from individual plants were performed. The reference was equivalent to a mix of the 5 tissues.
Project description:Arabidopsis thaliana transcriptome analysis in response to plant growth promoting rhizobacteria (PGPR)<br> Experiment 1 : Changes in gene expression profile triggered during root architecture response to Phyllobacterium.<br> Biological question : Which genes are up- or down-regulated in Arabidopsis thaliana cultivated in vitro with increased lateral root development in response to Phyllobacterium STM196 inoculation.<br> Experiment description: Seeds of wild-type Arabidopsis thaliana (ecotype Columbia) were surface-sterilized and sown on agar mineral medium (see below). 4 days after storage in the dark at 4C, seedling were cultivated 6 days in a growth chamber (16 h daily, 20-22C) and then transferred on a fresh agar mineral medium inoculated or not with Phyllobacterium STM196 (2.108 cfu/ml). 6 days later, root and leaves were collected, froze on liquid nitrogen and stored at -80C.<br> <br> Experiment 2 : Changes in gene expression profile triggered during induced systemic resistance (ISR)<br> Biological question : Which genes are up- or down-regulated during the ISR triggered by a rhizobacteria, in comparison with those affected by a pathogenic interaction. <br> Experiment description: Seeds were sown on 0.8% (W/V) agar mineral medium (see below). 4 days after storage in the dark at 4C, seedling were cultivated 6 days in a growth chamber (16 h daily, 20-22C) and then transferred on soil inoculated or not with 107 cfu.g-1 of Bradyrhizobium strain ORS278. Three weeks later, 3 leaves per plant were infiltrated with a suspension of Pseudomonas syringae pv. tomato (2.105 cfu.ml-1) or with MgSO4 10 mM alone for control plants. Infiltrated leaves were collected 24h later.<br> <br> Experiment 3 : Comparison of the effects of 3 rhizobacteria on Arabidopsis thaliana transcriptome<br> Biological question : which genes are specifically induced or repressed in Arabidopsis thaliana by inoculation of the soil with a PGPR vs a bacteria that has the ability to trigger nodule formation in a Legume. <br> Experiment description: Seeds of wild-type Arabidopsis thaliana (ecotype Columbia) were surface-sterilized and sown on agar mineral medium. Four days after storage in the dark at 4C, seedlings were cultivated 6 days in a growth chamber (16 h daily, 20-22C) and then transferred on soil inoculated or not with 108 cfu.g-1 of Mesorhizobium loti, or 108 cfu.g-1 of Phyllobacterium STM196, or 107 cfu.g-1 of Bradyrhizobium ORS278.