Project description:The accurate mapping of recurring DNA copy number aberrations (CNAs), a hallmark feature of the cancer genome, has facilitated the discovery of tumor suppressor genes and oncogenes. Microarray-based assays designed to detect these chromosomal copy number alterations on a genome-wide and high-resolution scale have emerged as a cornerstone technology in the genomic era. The diversity of commercially-available platforms prompted a systematic comparison of five copy number profiling assays for their ability to detect 2-fold copy number gain and loss (4n or 1n, respectively) as well as focal high-amplitude CNAs. Here, using a collection of established human melanoma cell lines, we defined the reproducibility, absolute signals, signal:noise, false-positive and false-negative rates for each of the five assays against ground-truth defined by Spectral Karyotyping (SKY), in addition to comparing the concordance of CNAs detection by two high-resolution Agilent and Affymetrix microarray platforms. Our analyses concluded that the Agilent’s 60mer oligo-microarray with probe design optimized for genomic hybridization offers the highest sensitivity and specificity [area under Receiver Operator Characteristic (ROC) curve >0.99] while Affymetrix’s SNP microarray appears to offer better detection of CNAs in gene-poor region. Availability of these comparison results should guide study design decisions and facilitate further computational development. Keywords: comparative genomic hybridization
Project description:The accurate mapping of recurring DNA copy number aberrations (CNAs), a hallmark feature of the cancer genome, has facilitated the discovery of tumor suppressor genes and oncogenes. Microarray-based assays designed to detect these chromosomal copy number alterations on a genome-wide and high-resolution scale have emerged as a cornerstone technology in the genomic era. The diversity of commercially-available platforms prompted a systematic comparison of five copy number profiling assays for their ability to detect 2-fold copy number gain and loss (4n or 1n, respectively) as well as focal high-amplitude CNAs. Here, using a collection of established human melanoma cell lines, we defined the reproducibility, absolute signals, signal:noise, false-positive and false-negative rates for each of the five assays against ground-truth defined by Spectral Karyotyping (SKY), in addition to comparing the concordance of CNAs detection by two high-resolution Agilent and Affymetrix microarray platforms. Our analyses concluded that the Agilentâs 60mer oligo-microarray with probe design optimized for genomic hybridization offers the highest sensitivity and specificity [area under Receiver Operator Characteristic (ROC) curve >0.99] while Affymetrixâs SNP microarray appears to offer better detection of CNAs in gene-poor region. Availability of these comparison results should guide study design decisions and facilitate further computational development. Keywords: comparative genomic hybridization We generated copy number profiles of a defined set of tumor cell lines on five oligo-microarray-based assays of three platforms (Agilent, Affymetrix and NimbleGen) and determined the reproducibility, signal and noise as well as sensitivity and specificity of each in detecting two-fold signals based on SKY-defined aberrations as ground-truth for comparison. In addition, high-density microarray assays from Agilent and Affymetrix platforms were further compared for definition of CNAs in an independent dataset using published analytical approaches. All arrays were run from the same DNA harvest from respective cell lines. Each array was run according to the protocol of the manufacturer.
Project description:Melanoma cell lines were genotyped to evaluate copy number differences between nodular melanoma (NM) and superficial spreading melanoma (SSM). Cell lines were also evaluated for copy number alterations in the SKP2/p27 axis. Affymetrix SNP arrays were performed according to manufacturer's instructions using DNA extracted from 18 melanoma cell lines and 4 melanocyte controls.
Project description:Epigenetic regulation of tumor suppressor genes (TSGs) has been shown to play a central role in melanomagenesis. Integrating gene expression and methylation array analysis we identified novel candidate TSGs frequently methylated in melanoma. We validated the methylation status of the most promising TSGs using the highly sensitive, specific and comprehensive Sequenom Epityper assay in a large panel of melanoma cell lines and resected melanomas, and compared the findings with that from cultured melanocytes. We found transcript levels of UCHL1, COL1A2, THBS1 and TNFRSF10D were inversely correlated with promoter methylation. The effect of this methylation on expression was confirmed at the protein level. Identification of these candidate TSGs and how their silencing is related to melanoma development will increase our understanding of the etiology of this cancer and may provide tools for its early diagnosis. Analysed samples consisted of 11 melanoma cell lines and 1 neonatal foreskin melanocyte pool as a reference. Melanoma cell lines overlap with members of the DNA copy number analysis series GSE9003 and expression profiling series GSE7127 . The matching copy number data GEO samples IDs are noted in characteristics: Matching CN Sample ID and characteristics: Matching expn Sample ID columns respectively.
Project description:Melanoma cell lines were genotyped to evaluate copy number differences between nodular melanoma (NM) and superficial spreading melanoma (SSM). Cell lines were also evaluated for copy number alterations in the SKP2/p27 axis. Affymetrix SNP arrays were performed according to manufacturer's instructions using DNA extracted from 18 melanoma cell lines and 4 melanocyte controls. Affymetrix SNP6.0 Array data for melanoma cell lines Copy number analysis of Affymetrix SNP 6.0 arrays was performed on 18 melanoma cell lines including 2 primary superficial spreading melanoma, 2 primary nodular melanoma, 2 metastatic nodular melanoma, and 12 metastatic cell lines. Four melanocyte control lines were also evaluated including 2 immortalized melanocyte cell lines (Hermes 1 and 2B) and 2 normal melanocyte lines cultured from neonatal foreskin (HEM-N and HEM-LP) that were used to construct the baseline for copy number analysis.
Project description:Comparison between the copy number of differentially methylated sites between lymph node metastasis from melanoma patients with good prognosis and melanoma brain metastasis. All samples are taken from different patients, and were established as cell lines in the John Wayne Cancer Institute.
Project description:The two most common melanoma histopathologic subtypes, superficial spreading (SSM) and nodular melanoma (NM), are believed to represent sequential phases of linear progression from radial to vertical growth. Studies suggest, however, that SSM and NM are biologically distinct. We utilized an integrative genomic approach to examine the possibility that SSM and NM are the result of independent pathways characterized by unique molecular alterations. Cell lines including SSM, NM, metastatic melanoma, and melanocyte controls were evaluated for copy number changes and differential mRNA expression using single nucleotide polymorphism array (SNP 6.0, Affymetrix) and gene array (U133A 2.0, Affymetrix). Data sets were integrated to identify copy number alterations that correlated with gene expression, and array results were validated using immunohistochemistry on human tissue microarrays (TMAs) and an external data set. The functional effect of genomic deletion was assessed by lentiviral overexpression. Integrative genomics revealed 8 genes in which NM/SSM-specific copy number alterations were correlated with NM/SSM differential gene expression (P<0.05, Spearman’s rank). Pathways analysis of differentially expressed genes (N=114) showed enrichment for metabolic-related processes. SSM-specific genomic deletions (DIS3, MTAP, G3BP2, SEC23IP, USO1) were verified in an expanded panel of cell lines, and forced overexpression of MTAP in SSM resulted in reduced cell growth. Metabolism-related gene ALDH7A1 was verified as overexpressed in NM using human TMAs.The identification of recurrent genomic deletions in SSM not present in NM challenges the linear model of melanoma progression and supports the unique molecular classification of SSM and NM. Gene expression profiling using Affymetrix U133A 2.0 arrays was performed on 18 melanoma cell lines including 2 primary superficial spreading melanoma, 2 primary nodular melanoma, 2 metastatic nodular melanoma, and 12 metastatic cell lines. Four melanocyte control lines were also evaluated including 2 immortalized melanocyte cell lines (Hermes 1 and 2B) and 2 normal melanocyte lines cultured from neonatal foreskin (HEM-N and HEM-LP).
Project description:The genomic loci with copy number alterations are known to harbor cancer genes. We investigated a comprehensive panel of gastric cancer cell lines for their genome-wide copy number alterations. Eighteen gastric cancer cell lines were profiled using Affymetrix 500K SNP arrays. For copy number calculation, seven independent normal blood samples were profiled together. The copy numbers were calculated genome-wide, in these cell lines with high resolution and reveal the cell line specific amplification and copy number changes.
Project description:Methylation profiles of a panel of breast cancer lines that were included in the integrative analysis of DNA copy number, allelic status, DNA methylation and gene expression.
Project description:Formalin-fixed, paraffin-embedded (FFPE) archival tissue is an important source of DNA material. The most commonly used technique to identify copy number aberrations from chromosomal DNA in tumorigenesis is array comparative genomic hybridization (aCGH). Although copy number analysis using DNA from FFPE archival tissue is challenging, several research groups have reported high quality and reproducible DNA copy number results using aCGH. Aim of the present study is to compare aCGH platforms suitable for copy number analysis using FFPE derived DNA. Two dual channel aCGH platforms (Agilent and NimbleGen) and a single channel SNP based platform (Affymetrix), were evaluated using seven FFPE colon cancer samples, median absolute deviation (MAD), deflection, signal-to-noise ratio (SNR) and DNA input requirements were used as quality criteria. Large differences were observed in MAD values and deflection between platforms; Agilent and NimbleGen showed better MAD values (0.13 for both) compared to Affymetrix (0.22). Contrary, Affymetrix showed a better deflection of 0.94, followed by 0.71 for Agilent and 0.51 for NimbleGen. Since the deflection compensates for the MAD the Signal to Noise Ratios (SNR) were comparable; Agilent ranks first, Affymetrix second and NimbleGen third with SNRs of 3.9, 3.6 and 3.3 respectively. DNA input amounts of 40ng are sufficient for high quality profiles with Affymetrix. For Agilent DNA input amounts of 50ng are sufficient for high quality profiles. For results of similar quality NimbleGen requires at least 100ng. Copy number analysis using DNA derived from FFPE archival material is feasible and shows reproducible results on high-resolution copy number platforms. Input amounts of DNA from FFPE material lower than recommended still yield high quality profiles without additional amplification steps.