Project description:Time-course and concentration-effect experiments with multiple time points and drug concentrations provide far more valuable information than experiments with just two design-points (treated vs. control), as commonly performed in most microarray studies. Analysis of the data from such complex experiments, however, remains a challenge. Here we present a semi-automated method for fitting time profiles and concentration-effect patterns, simultaneously, to gene expression data. The submodels for time-course included exponential increase and decrease models with parameters such as initial expression level, maximum effect, and rate-constant (or half-time). The submodel for concentration-effect was a 4-parameter Hill model. The method was applied to an Affymetrix HG-U95Av2 dataset consisting of 51 arrays. The specific study focused on the effects of two platinum drugs, cisplatin and oxaliplatin, on A2780 human ovarian carcinoma cells. Replicates were available at most time points and concentrations. Eighteen genes were selected; time-course and concentration-effect were modeled simultaneously. Comparisons of model parameters helped distinguish genes with different expression patterns between the two drug treatments. This overall paradigm can help in understanding the molecular mechanisms of the agents, and the timing of their actions. Keywords: time course , dose response, cisplatin, oxaliplatin, Human ovarian carcinoma cells
Project description:Transcriptional profiling of Homo sapiens inflammatory skin diseases (whole skin biospies): Psoriasis (Pso), vs Atopic Dermatitis (AD) vs Lichen planus (Li), vs Contact Eczema (KE), vs Healthy control (KO) In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation. In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation.
Project description:Unlike ovarian cancer, normal ovarian epithelium response to TGFb1 induced growth inhibition. This time course study tried to idenify genes that showed changes after additionof TGFb1 in immortalized ovarian surface epithelial cells (IOSE) which is derived from normal ovarian epithelial cells Keywords: Time-course
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.