Project description:Lasiodiplodia theobromae is one of the causal agents of Grapevine trunk diseases, which becomes a tremendous threat to the grapevine production worldwide. Plant pathogens secrete diverse effectors to suppress host immune responses or regulate the host metabolism to promote diseases. Our results suggest that L. theobromae LtCre1 targets host VvRHIP1 to manipulate the sugar signaling pathway, through disrupting the association of VvRHIP1 and VvRGS1 complex.
Project description:In opportunistic human pathogenic fungi, changes in gene expression play a crucial role in the evolution of growth stages from early spore germination through host infection. Comparative transcriptomics from diverse fungal pathogens along closely related non-pathogenic model provided insights of regulatory mechanisms behind the initiation of infectious processes by different fungi. We examined the gene expression patterns of 3,845 single-copy orthologous genes (SCOGs) across five phylogenetically distinct species, including the opportunistic human pathogens Fusarium oxysporum, Aspergillus fumigatus, and A. nidulans, and nonpathogenic species Neurospora crassa and Trichoderma asperelloides, at four sequential stages spore germination.
2024-12-31 | GSE279549 | GEO
Project description:Biocontrol of Grapevine Trunk Diseases
Project description:Plant pathogens require lethal virulence factors, susceptible hosts, and optimal environmental conditions for disease establishment. High soil salinity, exacerbated by climate change, significantly impacts agro-biological ecosystems. However, the overall interactions between plant pathogens and salt stress are not fully characterized or understood. This study examines the effects of salt stress on representative plant pathogens: Burkholderia gladioli, Pectobacterium carotovorum subsp. carotovorum, and Ralstonia solanacearum. Using pan-genome-based comparative transcriptomics, we analyzed the comprehensive alterations within the biological systems of plant pathogens when treated with 200 mM NaCl. Our results highlight the differential responses between salt-sensitive and salt-tolerant pathogens to salt stress.
Project description:Transcriptome profiling by RNA sequencing determined the genome-wide patterns of expression of N. parvum virulence factors when PDA or grape wood were provided as nutrient source and during an extensive interaction time course with grapevine stem.
Project description:To make clear the genetic diversity and virulence evolution at the genome-wide level of A. pleuropneumoniae Keywords: comparative genomic hybridization
Project description:The “Amoeboid Predator-Fungal Animal Virulence Hypothesis” posits that interactions with environmental phagocytes shape the evolution of virulence traits in fungal pathogens. In this hypothesis, selection to avoid predation by amoeba inadvertently selects for traits that contribute to fungal escape from phagocytic immune cells. Here, we investigate this hypothesis in the human fungalpathogens Cryptococcus neoformans and Cryptococcus deneoformans. Applying quantitative trait locus (QTL) mapping and comparative genomics, we discovered a cross-species QTL region that is responsible for variation in resistance to amoeba predation. In C. neoformans, this same QTL was found to have pleiotropic effects on melanization, an established virulence factor. Through fine mapping and population genomic comparisons, we identified the gene encoding the transcription factor BZP4 that underlies this pleiotropic QTL and we show that decreased expression of this gene reduces melanization and increases susceptibility to amoeba predation. Despite the joint effects of BZP4 on amoeba resistance and melanin production, we find no relationship between BZP4 genotype and escape from macrophages or virulence in murine models of disease. Our findings provide new perspectives on how microbial ecology shapes the genetic architecture of fungal virulence, and suggests the need for more nuanced models for the evolution of pathogenesis that account for the complexities of both microbe-microbe and microbe-host interactions.
Project description:Fomitiporia mediterranea (Fmed) is one of the main fungal species found in grapevine wood rot, also called “amadou”, one of the most typical symptoms of grapevine trunk disease Esca. This fungus is functionally classified as a white-rot, able to degrade all wood structure polymers, i.e., hemicelluloses, cellulose, and the most recalcitrant component, lignin. Specific enzymes are secreted by the fungus to degrade those components, namely carbohydrate active enzymes for hemicelluloses and cellulose, which can be highly specific for given polysaccharide, and peroxidases, which enable white-rot to degrade lignin, with specificities relating to lignin composition as well. Furthermore, besides polymers, a highly diverse set of metabolites often associated with antifungal activities is found in wood, this set differing among the various wood species. Wood decayers possess the ability to detoxify these specific extractives and this ability could reflect the adaptation of these fungi to their specific environment. The aim of this study is to better understand the molecular mechanisms used by Fmed to degrade wood structure, and in particular its potential adaptation to grapevine wood. To do so, Fmed was cultivated on sawdust from different origins: grapevine, beech, and spruce. Carbon mineralization rate, mass loss, wood structure polymers contents, targeted metabolites and secreted proteins were measured. We used the well-known white-rot model Trametes versicolor for comparison. Whereas no significant degradation was observed with spruce, a higher mass loss was measured on Fmed grapevine culture compared to beech culture. Moreover, on both substrates, a simultaneous degradation pattern and the degradation of wood extractives were demonstrated, and proteomic analyses identified a relative overproduction of oxidoreductases involved in lignin and extractive degradation on grapevine cultures, and only few differences in carbohydrate active enzymes. These results could explain at least partially the adaptation of Fmed to grapevine wood structural composition compared to other wood species and suggest that other biotic and abiotic factors should be considered to fully understand the potential adaptation of Fmed to its ecological niche.
2022-09-27 | PXD036889 | Pride
Project description:Grapevine trunk-associated ascomycetes ITS metabarcoding dataset
Project description:The opportunistic human pathogens, Candida albicans and Candida dubliniensis, are closely related species displaying large differences in virulence, but the reasons for these differences are elusive. Microarray-based comparative analysis of global gene expression in the two species incubated on reconstituted human oral epithelium (RHE) was used to identify specific and common changes in gene expression and find novel C. albicans virulence genes