Project description:Mass spectrometry-based proteomics by bottom-up approaches enables the unbiased and sensitive profiling of cellular proteomes and extracellular environments. Recent technological and bioinformatic advances permit identifying of dual biological systems in a single experiment, supporting investigation of infection from the perspective of both a host and pathogen. At the ocular surface, P. aeruginosa are commonly associated with biofilm formation and inflammation of the ocular tissues, causing damage to the eye. The interaction between P. aeruginosa and the immune system at the site of infection describes limitations in clearance of infection and enhanced pathogenesis. Here, we profile the extracellular environment (eye wash) of murine ocular surfaces infected with a clinical isolate of P. aeruginosa and detect neutrophil marker proteins, indicating neutrophil recruitment to the site of infection. In addition, we define the deepest murine corneal proteome to date and detect proteins, categories, and networks critical to the host response to infection. Moreover, we provide the first identification of bacterial-specific proteins in response to the host during bacterial biofilm formation of the eye. We validate our findings through in silico comparisons and enzymatic profiling. Overall, our work provides comprehensive profiling of the host-pathogen interface and uncovers differences between general and site-specific host responses to infection.
Project description:Congenital CMV is the leading cause of congenital infections leading to several different neurological complications including ocular pathology. MCMV infeciton of newborn BALB/c mice is a known mouse model to study human infection. Here we evaluated transcriptional changes in the eye caused by blocking CXCR3 during MCMV infection.
Project description:The graft-versus-host disease (GVHD) associated dry eye disease usually leads to refractory pain and visual impairment with limited treatments currently. Here we found exosome derived from mesenchymal stromal cell (MSC-exo) administered as eye drops significantly alleviates GVHD-associated dry eye disease in human and mouse models. To find out the essential elements during exosome treatment, we performed miRNA sequencing of exosomes derived from MSCs and L929 cells, and identified miR-204 in MSC-exo benefited the recovery of dry eye, which targeted IL-6/IL-6R/Stat3 signaling. Blockade of miR-204 abolished the therapeutic effect of MSC-exo while miR-204 overexpression from L929-exo markedly attenuates dry eye. Thus MSC-exo eye drops are efficacious in treating GVHD-associated dry eye and highlight miR-204 as a potential therapeutic agent.
Project description:Congenital CMV is the leading cause of congenital infections leading to several different neurological complications including ocular pathology. MCMV infeciton of newborn BALB/c mice is a known mouse model to study human infection. Here we evaluated transcriptional changes caused by the infection in the eye over the course of development from post natal day 5 to 28.
Project description:The eye is highly susceptible to inflammation-mediated tissue damage evoked during bacterial infection. We observed the itaconate as one of the highly induced metabolites in mouse retina and activated macrophages, yet its functional significance remains unknown in ocular infections.
Project description:Genomic enhancers regulate spatio-temporal gene expression by recruiting specific combinations of transcription factors (TFs). When TFs are bound to active regulatory regions, they displace canonical nucleosomes, making these regions biochemically detectable as nucleosome-depleted regions or accessible/open chromatin. Here we ask whether open chromatin profiling can be used to identify the entire repertoire of active promoters and enhancers underlying tissue-specific gene expression during normal development and oncogenesis in vivo. To this end, we first compare two different approaches to detect open chromatin in vivo using the Drosophila eye primordium as a model system: FAIRE-seq, based on physical separation of open versus closed chromatin; and ATAC-seq, based on preferential integration of a transposon into open chromatin. We find that both methods reproducibly capture the tissue-specific chromatin activity of regulatory regions, including promoters, enhancers, and insulators. Using both techniques, we screened for regulatory regions that become ectopically active during Ras-dependent oncogenesis, and identified 3778 regions that become (over-)activated during tumor development. Next, we applied motif discovery to search for candidate transcription factors that could bind these regions and identified AP-1 and Stat92E as key regulators. We validated the importance of Stat92E in the development of the tumors by introducing a loss of function Stat92E mutant, which was sufficient to rescue the tumor phenotype. Additionally we tested if the predicted Stat92E responsive regulatory regions are genuine, using ectopic induction of JAK/STAT signaling in developing eye discs, and observed that similar chromatin changes indeed occurred. Finally, we determine that these are functionally significant regulatory changes, as nearby target genes are up- or down-regulated. In conclusion, we show that FAIRE-seq and ATAC-seq based open chromatin profiling, combined with motif discovery, is a straightforward approach to identify functional genomic regulatory regions, master regulators, and gene regulatory networks controlling complex in vivo processes. FAIRE-Seq in Drosophila wild type eye-antennal imaginal discs (2 wt strains); ATAC-Seq in Drosophila wild type eye-antennal imaginal discs (3 wt strains) ; FAIRE-Seq in Drosophila Ras/Scrib induced eye disc tumors (1 early and 1 late); ATAC-Seq in Drosophila Ras/Scrib induced eye disc tumors (1 early and 1 late); ATAC-Seq in Drosophila eye discs with Unpaired over-expression (2 biological replicates); CTCF ChIP-seq in Drosophila eye discs; ChIP-seq input in Drosophila eye discs
Project description:Analysis of third instar eye-antennal Drosophila imaginal discs with forced expression of hth, tsh or hth+tsh in the eye using an eye-specific GAL4 driver (optix2.3-GAL4). Forced maintenance of hth+tsh expression (but not of any of the two alone) results in overgrowth and aberrant cell differentiation. Results provide insight into new targets of hth+tsh.
Project description:Whole-chromatin profile (FAIRE-seq) in three Drosophila species (D. melanogaster, D. pseudoobscura and D. virilis) in eye-antennal imaginal discs at the stage of third instar wandering larvae. By the use of Ornstein-Uhlenbeck methods, we assess the evolutionary forces acting on regulatory elements (cis-level) on chromatin activity across Drosophila eye-antennal imaginal discs at the stage of third instar larvae.
Project description:The major focus of Dr. Argueso's research is to characterize the carbohydrate portion of the different mucins expressed by the ocular surface epithelia as well as the enzymes involved with their synthesis, and to determine whether the alteration of mucin glycosylation is associated with ocular surface disease. Highly glycosylated mucins on the ocular surface (cornea and conjunctiva) are the first line of defense of the eye against injury and infection. Changes in O-glycosylation of mucins may cause ocular surface disorders, such as dry eye. Gene expression patterns in the conjunctival epithelium of three normal subjects were analyzed. The three subjects have the same ABO-blood-group. For each donor, conjunctival cells were obtained by impression cytology. Conjunctival impression cytology was performed on each eye two times with a one-week interval. Conjunctival cells obtained from each individual were pooled and the RNA isolated. All three samples were hybridized to the custom designed CFG GLYCOv2 glycogene array.