Project description:Using in vitro plant of variegated Yucca flaccida ‘Golden Sword’, we obtained an unvariegated plant. While the centre of the variegated leaf is yellow with a green border, the non-variegated leaf is completely green. The mRNA of tissues corresponding to the edge and the centre of variegated and non-variegated leaves were compared and particularly the yellow tissue was compared with the three green tissues.
Project description:Ilex x ‘Whoa Nellie’ is a yellow leaf (YT) mutant of I. x ‘Nellie R. Stevens’ (WT), an important ornamental woody species. However, the molecular mechanism of the YT mutant remains unknown. Therefore,we compared yellow-colored mutant leaves and normal green leaves in transcriptomic terms. Our study contributed to uncovering molecular mechanisms underlying yellow leaf mutaion and provided a reference for the application of leaf color mutants.
Project description:Monitor changes in the proteome of senescing leaves, using protein MS data obtained from the same leaf groups used for imaging. Arabidopsis thaliana mature leaves were grouped according to their chlorophyll content: Dark Green (DG), Green (G), Light Green (LG) and Yellow (Y), containing 100, 45, 25 and 6.5% chlorophyll relative to DG, respectivelyArabidopsis thaliana mature leaves were grouped according to their chlorophyll content: Dark Green (DG), Green (G), Light Green (LG) and Yellow (Y), containing 100, 45, 25 and 6.5% chlorophyll relative to DG, respectively
Project description:Phalaenopsis aprodite subsp. formosana is one of the most important species for Phalaenopsis breeding. A mutant line with variegated leaf is found in this species. The green leaves bear unstable yellow sectors. In order to investigate the molecular mechanism of the variegated mutant line, we sequenced the transcriptome of variegated mutant by Illumina's Solexa sequencing technology. The sequence analysis results showed 22,598 unigenes by de novo assembly method, and the average unigene length was 1,286 bp. The bioinformatics tools were used to screen the differential expression between green and yellow sectors of leaves. There were 389 differentially expressed unigenes were identified. In addition, Gene ontology (GO) and KEGG pathway analyses revealed diverse biological functions and processes from differentially expressed genes. In transcriptome analysis, seven differential expression gene between the green and yellow sectors of leaves can be identified as CHLM, CRD1, POR, CLH, SGR, psbA and Lhcb6 by RNA deep sequencing. The expression of candidate genes was confirmed using semi-quantitative reverse transcription (RT) PCR and real-time RT PCR. The result showed that the significantly differential expression of CLH and SGR between green and yellow sectors was confirmed. It is suggested that the overexpressed SGR gene promotes the function of chlorophyllase, leading to the rapid degradation of chlorophyll in yellow sector. It causes the chlorophyll to not accumulate in the yellow sector, as a result, the variegated leaves are shown.
Project description:The RNA-Seq was used to analyze the expression profiling of genes in different ablescent stages of 'Anji Baicha' Examination of three tea leaf samples in yellow stage, white stage and green stage
Project description:Chlorophyll plays critical roles in photosynthetic light harvesting, energy transduction and plant development. In this study, a novel wucai (Brassica campestris L.) germplasm with green outer leaves and yellow inner leaves at the adult stage (W7-2) was used to examine chlorophyll metabolism response to cold acclimation. A green leaf wucai genotype without leaf color changes named W7-1 was selected as the control to evaluate the chlorophyll metabolism changes of W7-2. Compared to W7-1, the contents of chlorophyll a (Chl a) and chlorophyll b (Chl b) in W7-2 were significantly reduced at five developmental stages (13, 21, 29, 37 and 45 days after planting (DAP). An iTRAQ-based quantitative proteomic analysis was carried out at 21 and 29 DAP according to the leaf color changes in both of genotypes. A total of 1409 proteins were identified, of which 218 showed differential accumulations between W7-2 and W7-1 during the two developmental stages.
Project description:The degree of yellowing in tobacco leaves is an important indicator for determining the maturity and harvesting time of tobacco leaves. Reduction in chlorophyll is of utility for promoting the concentrated maturation of tobacco leaves and achieving mechanised harvesting and mining, and utilising tobacco yellow leaf regulatory genes is of great significance for the selection and breeding of tobacco varieties suitable for mechanised harvesting and the resolution of the molecular mechanisms controlling leaf colouration. In this study, the phenotypes of the yellow-leaf K326 and K326 varieties were analysed, and it was observed that the yellow-leaf K326 variety exhibited a distinct yellow leaf phenotype with a significant reduction in chlorophyll content. Subsequently, using a combination of BSA-seq, transcriptomic sequencing (RNA-seq), and proteomic sequencing approaches, we identified the candidate gene Nitab4.5_0008674g0010 that encodes dihydroneopterin aldolase as a factor associated with tobacco leaf yellowing. Finally, by measuring the folate content in K326 and Huangye K326, the folate content in Huangye K326 was observed to be significantly lower than that in K326, thus indicating that folate synthesis plays a crucial role in phenotypic changes in tobacco yellow leaves. This study is the first to use BSA-seq combined with RNA-seq and proteomic sequencing to identify candidate genes in tobacco yellow leaves. The results provide a theoretical basis for the analysis of the mechanism of tobacco yellow leaf mutations.
Project description:The prevention or delay of brain senescence would enhance the quality of life for older persons. We investigated the effects of soybean extracts in senescence-accelerated (SAMP10) mice. This mouse is a model of brain senescence with a short life span, cerebral atrophy and cognitive dysfunction. Mice were fed a diet containing soybean extracts from 1 to 12 months of age. The effects of green and yellow soybean extracts were compared with a control diet without soybean extracts. Cognitive functions were higher in aged mice fed green soybean than age-matched control mice and mice fed yellow soybean. We further investigated transcriptome of the SAMP10 hippocampus indicated that expression levels of 36 genes were significantly higher and 19 genes were lower in mice that ingested green soybean than in mice that ingested yellow soybean. Some of the evidences were reconfirmed by real time PCR analysis; the levels of Cdh1 and Ptgds mRNA were significantly higher and that the level of Aplp1 was significantly lower in aged SAMP10 mice fed green soybean than mice ingested yellow soybean and control mice. Additionally, the amount of amyloid beta 40 and 42 was lower in the insoluble fraction of aged SAMP10 mice fed green soybean than control mice and mice fed yellow soybean, although the levels of amyloid beta 40 and 42 in the soluble fraction were not different. Lipocalin-type prostaglandin D2 synthase (L-PGDS) has been proposed as the endogenous amyloid beta - chaperone, suggesting that amyloid aggregation was lower in mice fed green soybean than control mice and mice fed yellow soybean. These results indicate that the intake of green soybean improved cognitive function in aged mice, and suppressed amyloid beta accumulation. Green soybean might help healthy aging of the brain in older persons.
Project description:The prevention or delay of brain senescence would enhance the quality of life for older persons. We investigated the effects of soybean extracts in senescence-accelerated (SAMP10) mice. This mouse is a model of brain senescence with a short life span, cerebral atrophy and cognitive dysfunction. Mice were fed a diet containing soybean extracts from 1 to 12 months of age. The effects of green and yellow soybean extracts were compared with a control diet without soybean extracts. Cognitive functions were higher in aged mice fed green soybean than age-matched control mice and mice fed yellow soybean. We further investigated transcriptome of the SAMP10 hippocampus indicated that expression levels of 36 genes were significantly higher and 19 genes were lower in mice that ingested green soybean than in mice that ingested yellow soybean. Some of the evidences were reconfirmed by real time PCR analysis; the levels of Cdh1 and Ptgds mRNA were significantly higher and that the level of Aplp1 was significantly lower in aged SAMP10 mice fed green soybean than mice ingested yellow soybean and control mice. Additionally, the amount of amyloid beta 40 and 42 was lower in the insoluble fraction of aged SAMP10 mice fed green soybean than control mice and mice fed yellow soybean, although the levels of amyloid beta 40 and 42 in the soluble fraction were not different. Lipocalin-type prostaglandin D2 synthase (L-PGDS) has been proposed as the endogenous amyloid beta - chaperone, suggesting that amyloid aggregation was lower in mice fed green soybean than control mice and mice fed yellow soybean. These results indicate that the intake of green soybean improved cognitive function in aged mice, and suppressed amyloid beta accumulation. Green soybean might help healthy aging of the brain in older persons. The effect of green and yellow soybean extracts on cognitive function in aged SAMP10 mice. Mice were fed a CE-2 diet containing 3.0% soybean extracts taken from both yellow and green soybean species, from 1 to 12 months of age. Total RNA was extracted from the stored hippocampus for DNA microarray analysis.