Project description:Development of the gut microbiota is greatly impacted in preterm infants. Despite increasing knowledge about microbiota composition in preterm infants, knowledge about the functional signatures of the intestinal microbiota remains limited. The aim was to study transitions in microbiota activity during the first six postnatal weeks in ten preterm infants. A total of 64 stool samples were measured by LC-MS/MS.
Project description:Colonizing commensal bacteria after birth are required for the proper development of the gastrointestinal tract. It is believed that bacterial colonization pattern in neonatal gut affects gut barrier function and immune system maturation. Studies on the development of faecal flora microbiota in infants on various formula feeds showed that the neonatal gut was first colonized with enterococci followed by other flora microbiota such as Bifidobacterium in breast feeding infants. Intriguingly, Bjorksten group Other studies showed that Bbabies who developed allergy were less often colonized with Enterococcus during the first month of life as compared to healthy infants. A lot of Many studies have been done on conducted to elucidate how bifidobacteria or lactobacilli, some of which are considered probiotic, regulate infant gut immunity. However, much fewer studies have been focused on enterococi. In our study, we demonstrate that E. faecalis, isolated from healthy newborns, suppress inflammatory responses activated in vivo and in vitro. We found E. faecalis attenuates proinflammatory cytokine secretions, especially IL-8, through JNK and p38 signaling pathways. This finding shed light on how the first colonizer, E.faecalis, regulate inflammatory responses in the host. Samples are analysed using web-based GEArray Expression Analysis Suite
Project description:Development of the gut microbiota is greatly impacted in preterm infants. Despite increasing knowledge about microbiota composition in preterm infants, knowledge about the functional signatures of the intestinal microbiota remains limited. The aim was to study transitions in microbiota activity during the first six postnatal weeks in ten preterm infants. A total of 64 stool samples were measured by LC-MS/MS.
Project description:The link between human gut microbiota (a complex group of microorganisms including not only bacteria but also fungi, viruses, etc.,) and the physiological state is nowadays unquestionable. Metaproteomic has emerged as a useful technique to characterize this microbial community, not just taxonomically, but also focusing on specific biological processes carried out by gut microbiota that may have an effect in the host health or pathological state. Cystic fibrosis is a genetic disease in which the microbiota of the respiratory tract determines the patient's survival and differences in composition of gut microbiota of cystic fibrosis patients respect to healthy infants have been reported. In order to characterize this host-microbiota inter-relation, we carried out the metaproteomic study of 30 stool samples from infants with cystic fibrosis.
Project description:The objective of the present study was to identify the nutrient utilization and the SCFA production potential of gut microbes during the first year of life. The 16S sequencing data represents 100 mother-child pairs, longitudinally for the infants (0, 3mo, 6mo and 12mo) and mothers 18 weeks pregnancy. We wanted to identify the SCFA composition in pregnant woman and their infants through the first year of life, and their correlation to gut bacteria and other influencal factors. Metaproteomics on selected infants were analyzed to look for nutrient sources used by potential SCFA producers.
Project description:Maternal secretor status is one of the determinants of human milk oligosaccharides (HMOs) composition, which in turn changes the gut microbiota composition of infants. To understand if this change in gut microbiota impacts immune cell composition, intestinal morphology and gene expression, day 21-old germ-free mice were transplanted with fecal microbiota from infants whose mothers were either secretors (SMM) or non-secretors (NSM) or from infants consuming dairy-based formula (MFM). For each group, one set of mice was supplemented with HMOs. HMO supplementation did not significantly impact the microbiota diversity however, SMM mice had higher abundance of genus Bacteroides, Bifidobacterium, and Blautia, whereas, in the NSM group, there were higher abundance of Akkermansia, Enterocloster, and Klebsiella. In MFM, gut microbiota was represented mainly by Parabacteroides, Ruminococcaceae_unclassified, and Clostrodium_sensu_stricto. In mesenteric lymph node, Foxp3+ T cells and innate lymphoid cells type 2 (ILC2) were increased in MFM mice supplemented with HMOs while in the spleen, they were increased in SMM+HMOs mice. Similarly, serum immunoglobulin A (IgA) was also elevated in MFM+HMOs group. Distinct global gene expression of the gut was observed in each microbiota group, which was enhanced with HMOs supplementation. Overall, our data shows that distinct infant gut microbiota due to maternal secretor status or consumption of dairy-based formula and HMO supplementation impacts immune cell composition, antibody response and intestinal gene expression in a mouse model.