Project description:Injuries to the retinal pigment epithelium (RPE) and outer retina often result in the accumulation of retinal microglia within the subretinal space. These subretinal microglia play crucial roles in inflammation and resolution, but the mechanisms governing their functions are still largely unknown. Our previous research highlighted the protective functions of choroidal gd T cells in response to RPE injury. In the current study, we employed single-cell RNA sequencing approach to delve deeper into the mechanisms involved. We found that gd T cells were the primary producer of interleukin-17 (IL-17) in the choroid. IL-17 signaled through its receptor on the RPE, subsequently triggering the production of interleukin-6 (IL-6). This cascade of cytokines initiated a metabolic reprogramming of subretinal microglia, enhancing their capacity for lipid metabolism. RPE-specific knockout of IL-17 receptor A led to the dysfunction of subretinal microglia and RPE pathology. Collectively, our findings suggest that responding to RPE injury, the choroidal gd T cells can initiate a protective signaling cascade that ensures the proper functioning of subretinal microglia.
Project description:Illumina Infinium HumanMethylation450 BeadChip data from genomic DNA of retinal pigment epithelium from Age-related Macular Degeneration patients or age-matched controls.
Project description:T cells that encounter cultured ocular pigment epithelial cells in vitro are inhibited from undergoing T cell receptor-triggered activation. Because retinal pigment epithelial (RPE) cells are able to suppress T-cell activation, we studied whether RPE cells could suppress cytokine production by activated T helper (Th) cells. In this study we showed that primary cultured RPE cells greatly suppressed activation of bystander CD4+ T cells in vitro, especially the cytokine production by the target T helper cells (Th1 cells, Th2 cells, Th17 cells, but not Th3 cells). Cultured RPE cells and RPE-supernatants significantly suppressed IL-17 producing CD4+ T cells, and RPE cells fully suppressed polarized Th17 cell lines that induced by recombinant proteins, IL-6 and TGFb2. Moreover, RPE cells failed to suppress IL-17 producing T cells in the presence of rIL-6. In addition, Th17 cells exposed to RPE were suppressed via TGFb, which produce RPE cells. These results indicate that retinal PE cells have immunosuppressive capacity in order to inhibit Th17-type effector T cells. Thus, ocular resident cells play a role in establishing immune regulation in the eye. Retinal pigment epithelium suppresses Th17 cells
Project description:Age is a primary risk factor for chronic conditions, including age-related macular degeneration (AMD). Impairments in autophagy processes are implicated in AMD progression, but the extent of autophagy’s contribution and its therapeutic potential remain ambiguous. This study investigated age-associated transcriptomic changes in autophagy pathways in the retinal pigment epithelium (RPE) and evaluated the protective effects of topical trehalose, an autophagy-enhancing small molecule, against light-induced outer retinal degeneration in mice. Transcriptomic analysis of human RPE/choroid and mouse RPE revealed consistent downregulation of autophagy pathways with age, alongside variable changes as AMD severity progressed. Given the age- and AMD-associated perturbation of autophagy pathways, we examined trehalose treatment in vitro, which enhanced autophagic flux and restored mitochondrial respiratory function in primary murine RPE cells exposed to oxidative stress. In vivo, pre-treatment with topical trehalose improved autophagy-lysosome activity in mouse RPE, demonstrated by elevated LC3B turnover and SQSTM1/p62 degradation. Furthermore, trehalose eyedrops protected mice from light-induced damage to the RPE and photoreceptors, preserving outer nuclear layer thickness, RPE morphology, and junctional F-actin organization. Taken together, the data support that age-related decline and severe dysregulation in autophagy contributed to AMD progression. By restoring autophagic flux, topical trehalose demonstrates therapeutic potential to address early autophagy-related pathological changes in AMD.
Project description:Severe, early-onset photoreceptor (PR) degeneration associated with MERTK mutations is thought to result from failed phagocytosis by retinal pigment epithelium (RPE). Notwithstanding, the severity and onset of PR degeneration in mouse models of Mertk ablation is determined by the hypomorphic expression or the loss of the Mertk paralog Tyro3. Here we find that loss of Mertk and reduced expression/loss of Tyro3 led to RPE inflammation, even before eye-opening. Incipient RPE inflammation cascaded to involve microglia activation and PR degeneration with monocyte infiltration. Inhibition of RPE inflammation with the JAK1/2 inhibitor ruxolitinib mitigated PR degeneration in Mertk -/- mice. Neither inflammation nor severe, early-onset PR degeneration were observed in mice with defective phagocytosis alone. Thus, inflammation drives severe, early-onset PR degeneration-associated with Mertk loss of function.
Project description:Age-related macular degeneration (AMD), featured with dysfunction and loss of retinal pigment epithelium (RPE), is lacking efficient therapeutic approaches. According to our previous studies, human amniotic epithelial stem cells (hAESCs) may serve as a potential seed cell source of RPE cells for therapy because they have no ethical concerns, no tumorigenicity, and little immunogenicity. Herein, trichostatin A and nicotinamide can direct hAESCs differentiation into RPE like cells. The differentiated cells display the morphology, marker expression and cellular function of the native RPE cells, and noticeably express little MHC class II antigens and high level of HLA-G. Importantly, visual function and retinal structure of Royal College of Surgeon (RCS) rats, a classical animal model of retinal degeneration, were rescued after subretinal transplantation with the hAESCs-derived RPE like cells. We established a high-efficient, low-cost and safety-guaranteed system for generating functional RPE cells from hAESCs. These results suggest a novel and ideal therapeutic strategy for retinal degeneration diseases
Project description:Progressive dysfunction and death of photoreceptors occurs in blinding diseases such as age-related macular degeneration and retinitis pigmentosa. The MyD88 protein is a central adaptor molecule for innate immune system Toll-like receptors (TLR) and interleukin-1 receptor (IL-1R), which are active in retinal disease and induce cytokine secretion from inflammatory cells. We recently demonstrated that inhibiting MyD88 in mouse models of retinal degeneration led to increased rod photoreceptor survival, which was associated with altered cytokine expression and increased neuroprotective microglia. However, additional molecular changes associated with MyD88 inhibitor-mediated neuroprotection are not known. Quantitative proteomics using iTRAQ LC-MS/MS is a high-throughput method ideal for providing new information about the molecular mechanisms contributing to photoreceptor protection. In this study, we used isobaric tags for relative and absolute quantification (iTRAQ) labeling followed by liquid chromatography–tandem mass spectrometry (LC-MS/MS) for quantitative proteomic analysis on the rd10 mouse model of retinal degeneration to identify protein pathways changed by MyD88 inhibition. A total of 42 proteins were differentially expressed in retinas from mice treated with MyD88 inhibitor compared with control. Notably, increased expression of multiple crystallins and chaperones that respond to cellular stress and have anti-apoptotic properties were identified in the MyD88 inhibited mice. Additional differentially expressed biological processes included pyrophosphatase activity and peptide biosynthesis. These data suggest that inhibiting MyD88 may enhance chaperone-mediated tissue protective pathways. Therefore, this study provides new insight into molecular events that contribute to photoreceptor protection from modulating inflammation.
Project description:T cells that encounter cultured ocular pigment epithelial cells in vitro are inhibited from undergoing T cell receptor-triggered activation. Because retinal pigment epithelial (RPE) cells are able to suppress T-cell activation, we studied whether RPE cells could suppress cytokine production by activated T helper (Th) cells. In this study we showed that primary cultured RPE cells greatly suppressed activation of bystander CD4+ T cells in vitro, especially the cytokine production by the target T helper cells (Th1 cells, Th2 cells, Th17 cells, but not Th3 cells). Cultured RPE cells and RPE-supernatants significantly suppressed IL-17 producing CD4+ T cells, and RPE cells fully suppressed polarized Th17 cell lines that induced by recombinant proteins, IL-6 and TGFb2. Moreover, RPE cells failed to suppress IL-17 producing T cells in the presence of rIL-6. In addition, Th17 cells exposed to RPE were suppressed via TGFb, which produce RPE cells. These results indicate that retinal PE cells have immunosuppressive capacity in order to inhibit Th17-type effector T cells. Thus, ocular resident cells play a role in establishing immune regulation in the eye.