Project description:We combined an iTRAQ-based proteome-level analysis with an RNA sequencing-based transcriptome-level analysis to detect the proteins and genes related to fruit peel colour development during two fruit development stages in the ‘Tunisia’ and ‘White’ pomegranate cultivars.
Project description:Purpose: the goals of this study are to compare fruit of two clitivars oriental melon transcriptome profiling (RNA-seq) at different stages to explore carotenoid potentail carotenoid accumulation mechanism Methods:The transcriptome sequence of two cultivars oriental melon fruits at different stages were generated by deep sequencing with three repeats using Illumina. The sequence reads that passed filters were mapped to melon genome (http://cucurbitgenomics.org/organism/18) using HISAT2 software. The differently expressed genes were identify by |log2(FoldChange)| > 0 & padj <= 0.05, and qRT–PCR validation was performed using SYBR Green assays Result:Using an optimized data analysis workflow, we mapped about 40 million sequence reads per sample to the melon genome. The differentially expressed genes were functionally classified by GO and KEGG enrichment. We focused on carotenoid metabolism related gene and validated using qRT-PCR. The results showed RNA-seq and qRT-PCR were highly correlated. Conclusion: Our study provided transcriptome sequence of oriental melon fruits at different stages in two cultivars. The optimized data analysis workflows reported here should provide comparative framework of expression profiles. Our transcriptome characterization contribute to analyze gene functions and metabolic process of oriental melon.
2022-01-13 | GSE193412 | GEO
Project description:Whole Genome Bisulfite Sequencing of melon fruit peel
Project description:Purpose:The red coloration of apple (Malus × domestica Borkh.) is due to the accumulation of anthocyanins in the fruit peel. Light is essential for anthocyanin biosynthesis in apple.Apple peel can quickly turn red under light conditions after unbagging. Therefore, the implementation of transcriptome sequencing to find genes that promote anthocyanin accumulation in response to light signals is necessary to clarify the mechanism of light-induced anthocyanin accumulation in apple peel.
Project description:RNA-Seq was conducted among sergeant bulks of four sex types of melon flowers, namely monoecious (AAGG), gynoecious (AAgg), hermaphrodite (aaGG), and andromonoecious (aagg), a total of about 105 million reads were generated from the melon transcriptome using Solexa sequencing.Totally 79,698 unigenes were generated and 75,537 unigenes were mapped to 11,805 annotated proteins in assembled melon genome (Garcia-Mas et al., 2012). Transcripts related to photomorphogenesis and flower development in plants were found, Most of the genes encoding plant hormone metabolism related protein, others related to flora development including Tasselseeds and male sterility genes which in phytohormones pathway were also detected. Comparison each two bulks (AAGG:AAgg, AAGG:aaGG, aagg:AAgg and aaGG:aagg ) exhibited different profiles of putative genes (include 745, 1342, 858 and 571 different expression genes, respectively). mRNA profiles of four sex types of melon flowers, namely monoecious (AAGG), gynoecious (AAgg), hermaphrodite (aaGG), and andromonoecious (aagg) were were generated by deep sequencing using Illumina Hiseq 2000.
Project description:Background: MicroRNAs (miRNAs) represent a family of small endogenous, non-coding RNAs that play critical regulatory roles in plant growth, development, and environmental stress responses. Although Hami melon is an attractive model for valuable biological traits analysis, the role of miRNA action in the fruit development and ripening remains largely unknown. Here, we performed small RNA sequencing to investigate the Hami melon miRNA profiles at four fruit developmental stages Results: Small RNA sequencing yielded raw reads in eight libraries. miRNAs expression profiles were variable at different fruit developmental stages. The expression levels of five known miRNAs were validated by quantitative real-time PCR. Among the identified miRNAs, several miRNAs showed developmentally regulated and differentially expressed pattern during fruit development. Conclusions: Our results present a first comprehensive set of identification and characterization of Hami melon fruit miRNAs and their potential targets, which provide valuable basis for further research on the critical role of miRNAs in melon fruit development.
Project description:This study was designed to identify the sRNAs in Aphis gossypii (cotton-melon aphid) during Vat-mediated resistance in teraction with melon
Project description:Sugar content is one of significant marks of fruit quality, and understanding the regulatory mechanism of sucrose accumulation is fundamental for breeding excellent melon fruit. As indicated by the co-expression network analysis, we distinguished a MYB transcription factor, CmMYB113, whose expression responds to oriental melon (‘HS’ (high-sucrose cultivar) and ‘LW’ (low-sucrose cultivar)) fruit ripening. Agrobacterium-mediated transient transformation injection and stable genetic transformation system confirmed that CmMYB113 promoted the sucrose accumulation and ethylene synthesis by up-regulating the expression of CmACO1 and CmSPS1 in oriental melon fruit. What’s more, we also identified a MADS transcription factor from the transcriptome, CmMADS26, which is highly expressed during melon fruit ripening. Intriguingly, CmMADS26 could directly bind to the promoter of CmACO1 to promote its transcription, and CmMYB113 physically interacted with CmMADS26 in yeast and tobacco leaves. Our findings give new bits of knowledge into the regulatory mechanisms by which MYB and MADS transcription factors interact to regulate melon fruit ripening and sucrose accumulation.
Project description:Melon (Cucumis melo L.) is a commercially important fruit crop that is cultivated worldwide. The melon research community has recently benefited from the determination of a complete draft genome sequence and the development of associated genomic tools, which have allowed us to focus on small RNAs (sRNAs). These are short, non-coding RNAs 21â24 nucleotides in length with diverse physiological roles. In plants, they regulate gene expression and heterochromatin assembly, and control protection against virus infection. Much remains to be learned about the role of sRNAs in melon. We constructed 10 sRNA libraries from two stages of developing ovaries, fruits and photosynthetic cotyledons infected with viruses, and carried out high-throughput pyrosequencing. We catalogued and analyzed the melon sRNAs, resulting in the identification of 26 known miRNA families (many conserved with other species), the prediction of 84 melon-specific miRNA candidates, the identification of trans-acting siRNAs, and the identification of chloroplast, mitochondrion and transposon-derived sRNAs. In silico analysis revealed more than 400 potential targets for the conserved and novel miRNAs. This analysis provides insight into the composition and function of the melon small RNAome, and paves the way towards an understanding of sRNA-mediated processes that regulate melon fruit development and melonâvirus interactions.