Project description:To determine Sigma 54 (SigL) reglons in Bacillus thuringiensis HD73 strain, A sigLmutant, HD(ΔsigL::kan), was constructed with insertion of kanamycin resistance gene cassete. We have employed whole genome microarray expression profiling as a discovery platform to identify the difference of gene expression between mutant and wild-type strains.
Project description:Transcriptional profiling of C. elegans nasp-1 / btr-1 mutant worms versus wild type N2 strain, both exposed to the bacterial pathogen Bacillus thuringiensis DB27.
Project description:To determine Sigma 54 (SigL) reglons in Bacillus thuringiensis HD73 strain, A sigLmutant, HD(M-NM-^TsigL::kan), was constructed with insertion of kanamycin resistance gene cassete. We have employed whole genome microarray expression profiling as a discovery platform to identify the difference of gene expression between mutant and wild-type strains. 2 ml samples were separately harvested from B. thuringiensis HD73 and HD(M-NM-^TsigL::kan) strains grown in SchaefferM-bM-^@M-^Ys sporulation medium (SSM) at stages T7 of stationary phase (7 hours after the end of the exponential phase). Three independent repeats were performed for each stain.
Project description:Transcriptional profiling of C. elegans nasp-1 / btr-1 mutant worms versus wild type N2 strain, both exposed to the bacterial pathogen Bacillus thuringiensis DB27. One-condition experiment. C. elegans nasp-1 / btr-1 mutant versus N2, exposed to Bacillus thuringiensis DB27. 3 biological replicates, including 1 dye-swaps.
Project description:We investigated the gene expression and metabolic regulatory mechanisms associated with the high-level accumulation of ICPs by performing the transcriptomics analysis of B. thuringiensis strain CT-43, using Illumina high throughout sequencing (RNA-seq) technique.
Project description:Bacillus thuringiensis has insecticidal activity against a variety of important agricultural pests and exhibits good bacteriostatic resistance to a variety of plant pathogens, and recentily study have shown that two strains of Bt (B88-82 and RG1-6 Strain) can induce the tomato to produce resistance to R. solanacearum. However, only the induced signal pathway has been studied, and its active substances are not reported. The aim of this study was to further explore the Bt strain that could induce plant disease resistance and study the induced activity of the Bt strain, and to study the signal pathway induced by transcriptional sequencing and fluorescence quantitative PCR. The results showed that there were 303 differentially expressed genes in rape after induction of 4F5 strain, among which 86 genes were up-regulated and 217 genes weredown-regulated. The result of 4BM1 strain induction was induced by transcriptase sequencing. There were 126 differentially expressed genes in rape. Among which 64 genes were up-regulated and 62 genes were down-regulated. The analysis of these differentialexpression genes revealed that they contained Salicylic acid pathway and Ethylene pathway-related genes, which need to be further verified.
Project description:This research aims at studying the responses of Bacillus thuringiensis NEB17 to salt (NaCl) stress, and the secreted proteins in the cell-free supernatant at 42h of bacterial growth, using LC-MS/MS.
Project description:We investigated the gene expression and metabolic regulatory mechanisms associated with the high-level accumulation of ICPs by performing the transcriptomics analysis of B. thuringiensis strain CT-43, using Illumina high throughout sequencing (RNA-seq) technique. The bacterial cells were collected at the time points of 7 h, 9 h, 13 h and 22 h for the whole-genome transcriptomics, respectively.
Project description:In the past decade, the paradigm which claimed that invertebrate immune systems lack specificity has been reconsidered. Accumulating evidence supports that invertebrate immune systems are able to mount specific responses to the pathogen species-, and even to the pathogen strain-level. However, the underlying molecular mechanisms behind invertebrate immune specificity remain mostly unknown. Studying the molecular basis of invertebrate immune specificity in a genetically tractable model, such as the nematode Caenorhabditis elegans, has the potential to reveal insights into the immune systems of other metazoans, including humans. We chose to study the mechanisms of specific immune responses of the worm to two different pathogenic strains of the Gram-positive bacterium Bacillus thuringiensis (MYBY18247 and MYBT18679), because there is phenotypic evidence of specific genotype-genotype interactions between this host-pathogen pair. We did an initial RNA-Seq experiment upon pathogen exposure and found that 9% of the differentially expressed genes change their expression in different ways when comparing the two pathogen strains. Through promoter region motif enrichment analysis, we found the GATA transcription factor ELT-2 is responsible for the pathogen strain-specific transcriptomic response. Upon elt-2 knockdown worms exposed to MYBT18679 display lower survival rate coupled with higher intestinal damage than non-infected controls. Additionally, by performing further genetic analysis using gene knockdown and knockout, we found that the p38 MAPK pathway acts likely in parallel to elt-2 and the transcription factor skn-1 cooperates with elt-2 to promote resistance to MYBT18679. On the other hand, elt-2 knockdown leads to a substantially higher survival rate, together with lower intestinal tissue damage compared to control worms, upon exposure to MYBT18247, another pathogenic Bacillus thuringiensis strain. The MYBT18247 pathogen load of elt-2(RNAi) worms compared to control worms remained unchanged, suggesting the elt-2 negatively regulates tolerance towards MYBT18247. We found that tolerance to MYBT18247 was positively regulated by the transcription factors: FOXO daf-16, bZip zip-2, nhr-99 and nhr-193. To identify elt-2 negatively-regulated downstream targets that could promote tolerance to MYBT18247, we performed a second RNA-Seq experiment, this time including elt-2(RNAi) worms exposed to both pathogenic strains. We found four genes negatively regulated by elt-2: cdr-2, poml-3, dhs-30 and tre-3, with putative function in detoxification and lipid metabolism, which can mediate tolerance to MYBT18247. We conclude that ELT-2 coordinates strain-specific immune responses in this invertebrate host and promotes resistance upon exposure to MYBT18679, while it negatively regulates tolerance to MYBT18247. The response is likely to be specific to the crystal pore-forming toxins produced by this pathogen.