Project description:Phylogeography of the Variable Antshrike (Thamnophilus caerulescens), a South American passerine distributed along multiple environmental gradients
| PRJNA624148 | ENA
Project description:Coastal wetlands soil bacterial community along inundation gradients
Project description:Analysis of microbial gene expression in response to physical and chemical gradients forming in the Columbia River, estuary, plume and coastal ocean was done in the context of the environmental data base. Gene expression was analyzed for 2,234 individual genes that were selected from fully sequenced genomes of 246 prokaryotic species (bacteria and archaea) as related to the nitrogen metabolism and carbon fixation. Seasonal molecular portraits of differential gene expression in prokaryotic communities during river-to-ocean transition were created using freshwater baseline samples (268, 270, 347, 002, 006, 207, 212).
Project description:Analysis of microbial gene expression in response to physical and chemical gradients forming in the Columbia River, estuary, plume and coastal ocean was done in the context of the environmental data base. Gene expression was analyzed for 2,234 individual genes that were selected from fully sequenced genomes of 246 prokaryotic species (bacteria and archaea) as related to the nitrogen metabolism and carbon fixation. Seasonal molecular portraits of differential gene expression in prokaryotic communities during river-to-ocean transition were created using freshwater baseline samples (268, 270, 347, 002, 006, 207, 212). Total RNA was isolated from 64 filtered environmental water samples collected in the Columbia River coastal margin during 4 research cruises (14 from August, 2007; 17 from November, 2007; 18 from April, 2008; and 16 from June, 2008), and analyzed using microarray hybridization with the CombiMatrix 4X2K format. Microarray targets were prepared by reverse transcription of total RNA into fluorescently labeled cDNA. All samples were hybridized in duplicate, except samples 212 and 310 (hybridized in triplicate) and samples 336, 339, 50, 152, 157, and 199 (hybridized once). Sample location codes: number shows distance from the coast in km; CR, Columbia River transect in the plume and coastal ocean; NH, Newport Hydroline transect in the coastal ocean at Newport, Oregon; AST and HAM, Columbia River estuary locations near Astoria (river mile 7-9) and Hammond (river mile 5), respectively; TID, Columbia River estuary locations in the tidal basin (river mile 22-23); BA, river location at Beaver Army Dock (river mile 53) near Quincy, Oregon; UP, river location at mile 74.
Project description:Metastasis remains the leading cause of death in breast cancer. However, little is known about the dynamic changes during the dissemination of breast cancer. Here, we generate single-cell RNA and spatial transcriptome of primary tumors and paired metastatic lymph nodes in 4 breast cancer patients. We identified a disseminated cancer cell cluster with high levels of oxidative phosphorylation (OXPHOS). We also noticed the transition between glycolysis and OXPHOS when dissemination initiates. Furthermore, this distinct cell cluster is distributed along the tumor’s leading edge.
Project description:The study of orchid mycorrhizal interactions is particularly complex because of the peculiar life cycle of these plants and their diverse trophic strategies. Here, large-scale transcriptomics has been applied to investigate gene expression in the mycorrhizal roots of the terrestrial mixotrophic orchid Limodorum abortivum under natural conditions. Our results provide new insights into the mechanisms underlying plant-fungus interactions in orchids and in particular on the plant responses to the mycorrhizal symbiont(s) in adult roots. Comparison with gene expression in mycorrhizal roots of another orchid species, Oeceoclades maculata, suggests that amino acids may represent the main nitrogen source in both protocorms and adult orchids, at least for mixotrophic species. The upregulation, in mycorrhizal L. abortivum roots, of some symbiotic molecular marker genes identified in mycorrhizal roots from other orchids as well as in arbuscular mycorrhiza, suggests a common plant core of genes in endomycorrhizal symbioses. Further efforts will be required to understand whether the specificities of orchid mycorrhiza depend on fine-tuned regulation of these common components, or whether specific additional genes are involved.