Project description:Cigarette smoking is the leading cause of the respiratory diseases collectively known as chronic obstructive pulmonary disease (COPD). While the pathogenesis of COPD is complex, there is abundant evidence that alveolar macrophages (AM) play an important role. Based on the concept that COPD is a slow-progressing disorder likely involving multiple mediators released by AM activated by cigarette smoke, the present study focuses on the identification of previously unrecognized genes that may be linked to early events in the molecular pathogenesis of COPD, as opposed to factors associated with the presence of disease. To accomplish this, microarray analysis using Affymetrix microarrays was used to carry out an unbiased survey of the differences in gene expression profiles in the AM of phenotypically normal, ~20 pack-yr smokers compared to healthy non-smokers. Although smoking did not alter the global gene expression pattern of AM, 75 genes were modulated by smoking, with 40 genes up-regulated and 35 down-regulated in the AM of smokers compared to non-smokers. Most of these genes belong to the functional categories of immune/inflammatory response, cell adhesion and extracellular matrix, proteolysis and antiproteolysis, lysosomal function, antioxidant-related, signal transduction and regulation of transcription. Of these 75 genes, 69 have not been previously recognized to be up- or down-regulated in alveolar macrophages in association with smoking or COPD, including genes coding for proteins belonging to all of the above categories, and others belonging to various functional categories or of unknown function. These observations suggest that gene expression responses of alveolar macrophages associated with the stress of cigarette smoking are more complex than previously thought, and offer a variety of new insights into the complex pathogenesis of smoking-induced lung diseases. Experiment Overall Design: 5 non smokers and 5 smokers Experiment Overall Design: Alveolar macrophages were obtained from bronchoalveolar lavage
Project description:Cigarette smoking is the leading cause of the respiratory diseases collectively known as chronic obstructive pulmonary disease (COPD). While the pathogenesis of COPD is complex, there is abundant evidence that alveolar macrophages (AM) play an important role. Based on the concept that COPD is a slow-progressing disorder likely involving multiple mediators released by AM activated by cigarette smoke, the present study focuses on the identification of previously unrecognized genes that may be linked to early events in the molecular pathogenesis of COPD, as opposed to factors associated with the presence of disease. To accomplish this, microarray analysis using Affymetrix microarrays was used to carry out an unbiased survey of the differences in gene expression profiles in the AM of phenotypically normal, ~20 pack-yr smokers compared to healthy non-smokers. Although smoking did not alter the global gene expression pattern of AM, 75 genes were modulated by smoking, with 40 genes up-regulated and 35 down-regulated in the AM of smokers compared to non-smokers. Most of these genes belong to the functional categories of immune/inflammatory response, cell adhesion and extracellular matrix, proteolysis and antiproteolysis, lysosomal function, antioxidant-related, signal transduction and regulation of transcription. Of these 75 genes, 69 have not been previously recognized to be up- or down-regulated in alveolar macrophages in association with smoking or COPD, including genes coding for proteins belonging to all of the above categories, and others belonging to various functional categories or of unknown function. These observations suggest that gene expression responses of alveolar macrophages associated with the stress of cigarette smoking are more complex than previously thought, and offer a variety of new insights into the complex pathogenesis of smoking-induced lung diseases. Keywords: Comparison of gene expression profile in smokers vs non-smokers
Project description:Modification of Gene Expression of the Small Airway Epithelium in Response to Cigarette Smoking The earliest morphologic evidence of changes in the airways associated with chronic cigarette smoking is in the small airways. To help understand how smoking modifies small airway structure and function, we developed a strategy using fiberoptic bronchoscopy and brushing to sample the human small airway (10th-12th order) bronchial epithelium to assess gene expression (HG-133 Plus 2.0 array) in phenotypically normal smokers (n=10, 33 ± 7 pack-yr) compared to matched non-smokers (n=12). Even though the smokers were phenotypically normal, analysis of the small airway epithelium of the smokers compared to the non-smokers demonstrated up- and -down-regulation of genes in multiple categories relevant to the pathogenesis of chronic obstructive lung disease (COPD), including genes coding for cytokines/innate immunity, apoptosis, mucin, response to oxidants and xenobiotics, and general cellular processes. In the context that COPD starts in the small airways, these gene expression changes in the small airway epithelium in phenotypically normal smokers are candidates for the development of therapeutic strategies to prevent the onset of COPD. Keywords: smokers vs non-smokers
Project description:To determine if differences in the severity of pulmonary infection in cystic fibrosis been seen in late isolates od Pseudomonas aeruginosa and Burkholderia cepacia are associated with differences in the initial repsonse of alveolar macrophages (AM) to these pathogens, we assessed gene expression changes in human AM in response to infection with a laboratoty strain, early and late clinical isolates of P. aeruginosa, and B. cepacia. Keywords: Comparison of gene expression in alveolar macrophages of normal non-smokers and normal smokers.