Project description:To deal with the broad spectrum of coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that threatens human health, it is essential to develop not only drugs that target viral proteins but also consider drugs that target host proteins/cellular processes to protect them from being hijacked for viral infection and replication. To this end, it has been reported that autophagy is deeply involved in coronavirus infection. In this study, we used airway organoids to screen a chemical library of autophagic modulators to identify compounds that could potentially be used to fight against infections by a broad range of coronaviruses. Among the 80 autophagy-related compounds tested, cycloheximide and thapsigargin reduced SARS-CoV-2 infection efficiency in a dose-dependent manner. Cycloheximide treatment reduced the infection efficiency of not only six SARS-CoV-2 variants but also human coronavirus (HCoV)-229E and HCoV-OC43. Cycloheximide treatment also reversed viral infection-induced innate immune responses. However, even low dose (1 μM) cycloheximide treatment altered the expression profile of ribosomal RNAs, thus side effects such as inhibition of protein synthesis in host cells must be considered. These results suggest that cycloheximide has broad-spectrum anti-coronavirus activity in vitro and warrants further investigation.
Project description:Initially identified as a functional marker for resident-memory (Trm) CD8+ T cells, CD103 (encoded by ITGAE gene) has broad roles in immunity and diseases. Elucidating the function and regulation of CD103 is thus of importance. This study revealed that the CD103 expression by CD8 T cells under steady state contributes to the clearance of acute viral infection. More importantly, it discovered TGF-SKI-Smad4 a critical signaling axis in restricting CD103 expression in CD8+ T cells for their function. Mechanistically, by ChIP-Seq and ChIP analysis, SKI associated with Smad4 was found to directly and epigenetically suppress CD103 transcription. This study therefore reveals a novel TGF-SKI-Smad4 pathway to specifically enable CD103 expression in CD8+ T cells for protective immunity.
Project description:N6-methyladenosine (m6A) modification pathway is hijacked by several RNA viruses, including SARS-CoV-2, making it an attractive host-directed target for development of broad-spectrum antivirals. Here, we show that histone methyltransferase G9a, through its interaction with METTL3, regulates SARS-CoV-2 mediated rewiring of host m6A methylome to ultimately promote turnover, abundance, secretion and/or phosphorylation of various viral receptors and proteases, transcription factors, cytokines/chemokines, coagulation & angiogenesis associated proteins, and fibrosis markers. More importantly, drugs targeting G9a and its associated protein EZH2 are potent inhibitors of SARS-CoV-2 replication and reverse multi-omic effects of coronavirus infection in human alveolar epithelial cells (A549-hACE2) and COVID-19 patient PBMCs - with similar changes seen in multiorgan autopsy samples from COVID-19 patients. Altogether, we extend G9a function(s) beyond transcription to translational regulation during COVID-19 pathogenesis and show that targeting this master regulatory complex represents a new strategy (drug-class) that can be leveraged to combat emerging anti-viral resistance and infections.
Project description:N6-methyladenosine (m6A) modification pathway is hijacked by several RNA viruses, including SARS-CoV-2, making it an attractive host-directed target for development of broad-spectrum antivirals. Here, we show that histone methyltransferase G9a, through its interaction with METTL3, regulates SARS-CoV-2 mediated rewiring of host m6A methylome to ultimately promote turnover, abundance, secretion and/or phosphorylation of various viral receptors and proteases, transcription factors, cytokines/chemokines, coagulation & angiogenesis associated proteins, and fibrosis markers. More importantly, drugs targeting G9a and its associated protein EZH2 are potent inhibitors of SARS-CoV-2 replication and reverse multi-omic effects of coronavirus infection in human alveolar epithelial cells (A549-hACE2) and COVID-19 patient PBMCs - with similar changes seen in multiorgan autopsy samples from COVID-19 patients. Altogether, we extend G9a function(s) beyond transcription to translational regulation during COVID-19 pathogenesis and show that targeting this master regulatory complex represents a new strategy (drug-class) that can be leveraged to combat emerging anti-viral resistance and infections.
Project description:Among the flaviviral proteins, NS5 is the largest and most conserved. NS5 contains major enzymatic components of the viral replication complex. Disruption of the common key NS5-host protein-protein interactions critical for viral replication could aid in the development of broad-spectrum anti-flaviviral therapeutics. To this end, we investigated the JEV- and ZIKV-NS5 interactomes in human cells using GFP pull-downs with mass spectrometry analysis in a label-free fashion. A total of 138 cellular proteins interacting with NS5 from JEV, ZIKV, or both were identified as Protein classification analysis of identified cellular targets revealed the enrichment of RNA binding, processing and splicing including spliceosomal and spliceosome-associated proteins in both datasets. Comparison of our data with literature not only revealed several cellular NS5 interacting proteins shared among flaviviruses, but also identified proteins that have no known function in flavivirus biology such as RNA polymerase II-associated Paf1 complex, protein phosphatase 6, and s-adenosylmethionine synthetase. Our study generates the first landscape of the JEV and ZIKV NS5 interactome in human cells and identifies cellular proteins that are potentially targetable for broad-spectrum anti-flaviviral therapy.
Project description:RNA interference (RNAi) functions as the major host antiviral defense in insects, while less is understood about how to utilize antiviral RNAi in controlling viral infection in insects. Enoxacin belongs to the family of synthetic antibacterial compounds based on a fluoroquinolone skeleton that has been previously found to enhance RNAi in mammalian cells. In this study, we showed that enoxacin efficiently inhibited viral replication of Drosophila C virus (DCV) and Cricket paralysis virus (CrPV) in cultured Drosophila cells. Enoxacin promoted the loading of Dicer-2-processed virus-derived siRNA into the RNA-induced silencing complex, thereby enhancing antiviral RNAi response in infected cells. Moreover, enoxacin treatment elicited an RNAi-dependent in vivo protective efficacy against DCV or CrPV challenge in adult fruit flies. In addition, enoxacin also inhibited replication of flaviviruses, including Dengue virus and Zika virus, in Aedes mosquito cells in an RNAi-dependent manner. Together, our findings demonstrated that enoxacin can enhance RNAi in insects, and enhancing RNAi by enoxacin is an effective antiviral strategy against diverse viruses in insects, which may be exploited as a broad-spectrum antiviral agent to control vector transmission of arboviruses or viral diseases in insect farming.