Project description:Streptomyces sp. MB42 produces antimicrobial compound under the pressence of specific compounds. This experiment is to see which gene cluster upregulated during the treatment of target compound.
Project description:Bacterial antimicrobial compounds and global regulatory networks are typically studied as separate systems, limiting our understanding of how these functions might be integrated. Here we reveal a dual-function system in the biocontrol strain Pseudomonas sp. MUP55, where the pvf cluster simultaneously functions as a global regulator of specialized metabolism and produces direct antimicrobial compounds. Metabolomic and transcriptomic analysis of a ∆pvfC mutant showed extensive global change of the regulation of metabolites and gene expression, with effects on specialized metabolites. Remarkably, pvfC differentially regulates dual siderophore systems and uncouples typically co-regulated small regulatory RNAs in the Gac/Rsm cascade. Heterologous expression confirmed the pvf cluster produces compounds with direct antimicrobial activity independent of its regulatory functions. Comparative genomic analysis revealed the MUP55 pvf cluster contains a rare additional pvfE gene found in only 3.4% of identified pvf clusters. This evolutionary integration of regulatory and defensive functions within a single genetic system provides an efficient strategy for bacterial competitive fitness and resource allocation, expanding our understanding of how beneficial microbes coordinate cellular processes while maintaining environmental competitiveness
Project description:Volatile organic compounds (VOCs) may play a role in systemic acquired resistance (SAR), a salicylic acid (SA)-associated, broad-spectrum immune response in systemic, healthy tissues of locally infected plants. Four-to-five-week-old plants were exposed for three days to a mixture of volatile pinenes to investigate genome-wide transcriptional responses relative to hexane-treated control plants.
Project description:The marine bacterium Phaeobacter inhibens produces tropodithietic acid (TDA), a broad-spectrum antibiotic and anticancer agent. TDA allows P. inhibens to antagonize other bacteria, including several pathogens, and eukaryotes. Since recently antibiotics are also discussed to function as intermicrobial signals. Here we show that ~10% of the genes of P. inhibens are strongly influenced by N-acyl-homoserine lactone (AHL) mediated quorum sensing (QS), switching the bacteriumâs life style from attached to free-living. In an AHL negative mutant of P. inhibens subinhibitory concentrations of TDA caused the same regulatory effect as the AHL. This demonstrates that bacteria can produce antibiotic compounds not only as weapons, but also to substitute their endogenous AHL molecule in QS. The dual function of TDA probably supports the QS system to accelerate regulatory processes and points to a so far neglected role of antibiotics at subinhibitory concentrations in the environment and in microbial interactions. Comparison of whole transcriptomes of wildytype, quorum sensing mutants (pgaI and pgaR) and pgaI grown supplemented with subinhibitory concentration of the antibiotic TDA. RNA isolated in the late exponential growth phase. 4 biological replicates investigated for each strain.
Project description:Brevibacillus massiliensis strain phR(T) sp. nov. is the type strain of B. massiliensis sp. nov., a new species within the genus Brevibacillus. This strain was isolated from the fecal flora of a woman suffering from morbid obesity. B. massiliensis is a Gram-positive aerobic rod-shaped bacterium. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 5,051,018 bp long genome (1 chromosome but no plasmid) contains 5,051 protein-coding and 84 RNA genes, and exhibits a G+C content of 53.1%.
Project description:The marine bacterium Phaeobacter inhibens produces tropodithietic acid (TDA), a broad-spectrum antibiotic and anticancer agent. TDA allows P. inhibens to antagonize other bacteria, including several pathogens, and eukaryotes. Since recently antibiotics are also discussed to function as intermicrobial signals. Here we show that ~10% of the genes of P. inhibens are strongly influenced by N-acyl-homoserine lactone (AHL) mediated quorum sensing (QS), switching the bacterium’s life style from attached to free-living. In an AHL negative mutant of P. inhibens subinhibitory concentrations of TDA caused the same regulatory effect as the AHL. This demonstrates that bacteria can produce antibiotic compounds not only as weapons, but also to substitute their endogenous AHL molecule in QS. The dual function of TDA probably supports the QS system to accelerate regulatory processes and points to a so far neglected role of antibiotics at subinhibitory concentrations in the environment and in microbial interactions.