Project description:Primary tumor recurrence occurs commonly after surgical resection of lung squamous cell carcinoma (SCC). The aim of this study was to identify genes involved in recurrence in lung squamous cell carcinoma patients. Array comparative genomic hybridization (aCGH) was performed on DNA extracted from tumour tissue from 62 patients with primary lung squamous cell carcinomas. aCGH data was analysed to identify genes affected by copy number alterations that may be involved in SCC recurrence. Candidate genes were then selected for technical validation based on differential copy number between recurrence and non-recurrence SCC tumour samples. Genes technically validated advanced to tests of biological replication by qPCR using an independent test set of 72 primary lung SCC tumour samples. 18q22.3 loss was identified by aCGH as significantly associated with recurrence (p=0.038). Although aCGH copy number loss associated with recurrence was found for seven genes within 18q22.3, only SOCS6 copy number loss was both technically replicated by qPCR and biologically validated in the test set. DNA copy number profiling using 44K element array comparative genomic hybridization microarrays of 62 primary lung squamous cell carcinomas.
Project description:Primary tumor recurrence occurs commonly after surgical resection of lung squamous cell carcinoma (SCC). The aim of this study was to identify genes involved in recurrence in lung squamous cell carcinoma patients. Array comparative genomic hybridization (aCGH) was performed on DNA extracted from tumour tissue from 62 patients with primary lung squamous cell carcinomas. aCGH data was analysed to identify genes affected by copy number alterations that may be involved in SCC recurrence. Candidate genes were then selected for technical validation based on differential copy number between recurrence and non-recurrence SCC tumour samples. Genes technically validated advanced to tests of biological replication by qPCR using an independent test set of 72 primary lung SCC tumour samples. 18q22.3 loss was identified by aCGH as significantly associated with recurrence (p=0.038). Although aCGH copy number loss associated with recurrence was found for seven genes within 18q22.3, only SOCS6 copy number loss was both technically replicated by qPCR and biologically validated in the test set.
Project description:RNA-Seq was applied to oral squamous cell carcinomas and matched normal oral tissue to measure gene expression patterns and identify examples of allelic imbalance. Oral squamous cell carcinomas (OSCC) and matched normal tissue from 3 patients.
Project description:Clinically evident oral lesions, oral epithelial dysplasia, precede development of oral squamous cell carcinomas (SCC) and are considered to transform to cancer by acquisition of genetic or epigenetic alterations. Here, we show that, +3q24-qter, -8pter-p23.1, +8q12-q24.2 and +20 are early events identifying two pathways to oral cancers that differ in clinical behavior. One or more of these copy number aberrations is present in the major subgroup (3q8pq20 subtype, 75-80% of lesions) that develops with chromosomal instability and risk for metastasis, while they are absent from the smaller and chromosomally stable non-3q8pq20 subgroup (20-25% of lesions) associated with low risk for metastasis. Thus, +3q, -8p, +8q and +20 is a biomarker for oral SCC metastasis. On the other hand, while increased numbers of genomic alterations can be harbingers of progression to cancer, dysplastic lesions lacking copy number changes cannot be considered benign as they are potential precursors to non-3q8pq20 oral SCC. 63 oral SCCs and adjacent regions of normal tissue, 44 oral dysplasias
Project description:Analysis of DNA from 89 oral lesions by whole genome tiling-path array comparative genomic hybridization. Keywords: array comparative genomic hybridization Genomic DNA isolated from 89 formalin-fixed paraffin-embedded oral dysplasias and tumors, then profiled by whole genome tiling-path array CGH to identify DNA copy alterations for each case.
Project description:To identify genes differentially expressed between normal oral fibroblasts and CAFs derived from genetically stable and unstable oral squamous cell carcinomas.