Project description:The gene ssr3341 was previously suggested to encode an orthologue of the RNA chaperone Hfq in Synechocystis sp. strain PCC 6803. When a phototactic strain of this cyanobacterium was insertionally inactivated at ssr3341, the mutants were not transformable, and were rendered non-phototactic compared to the wild type. The loss of motility was complemented by re-introduction of the wild-type gene, correlated with the re-establishment of type IV pili on the cell surface. Microarray analyses revealed a small set of genes with drastically reduced transcript levels in the knock-out mutant over wild-type cells. Among the most strongly affected genes are with slr1667, slr1668, slr2015, slr2016 and slr2018 five genes which belong to two operons that previously were shown to be involved in motility and controlled by the SYCRP1-cAMP receptor protein. This fact constitutes a link between cAMP signalling, motility, and the involvement of RNA-based regulation. This is the first report demonstrating a functional role of Hfq in cyanobacteria. Keywords: comparative expression profiling
Project description:Like many other organisms, cyanobacteria exhibit rhythmic gene expression with a period length of 24 hours to adapt to daily environmental changes. In the model organism Synechococcus elongatus PCC 7942 the central oscillator consists of three proteins: KaiA, KaiB and KaiC and utilizes the histidine kinase SasA and its response regulator RpaA as output-signaling pathway. Synechocystis sp. PCC 6803 contains two additional homologs of the kaiB and kaiC genes. Here we demonstrate that RpaA interacts with the core oscillator KaiAB1C1 of Synechocystis sp. PCC 6803 via SasA, similar to Synechococcus elongatus PCC 7942. However, interaction with the additional Kai homologs was not detected, suggesting different signal transduction components for the clock homologs. Inactivation of rpaA in Synechocystis sp. PCC 6803, lead to reduced viability of the mutant in light-dark cycles that aggravated under mixotrophic growth conditions. Chemoheterotrophic growth in the dark was abolished completely. In accordance, transcriptomic data revealed that RpaA is involved in the regulation of genes related to CO2‑acclimation and carbon metabolism under diurnal light conditions. Further, our results indicate that RpaA functions in the posttranslational regulation of glycogen metabolism as well, and a potential link between the circadian clock and motility was identified.
Project description:In contrast to Synechococcus elongatus PCC 7942, which has been the model cyanobacterium for the study of the prokaryotic circadian clock for more than 20 years, only few data exist on the circadian behaviour of the widely used cyanobacterium Synechocystis sp. PCC 6803. The standard kaiABC operon present in this organism was shown to encode a functional KaiC protein which interacts with KaiA, similar to the Synechococcus elongatus PCC 7942 clock. Inactivation of this operon in Synechocystis sp. PCC 6803 resulted in a mutant with a strong growth defect in light-dark cycles, which was even more pronounced when glucose was added to the growth medium. In addition, mutants showed a bleaching phenotype. No effects were detected in mutant cells grown in constant light. Microarray experiments performed with cells grown for one day in a light-dark cycle revealed many differentially regulated genes with known functions in the M-NM-^TkaiABC mutant in comparison to the wild type. Most interestingly, we identified genes like the gene encoding the cyanobacterial phytochrome Cph1 and the light repressed protein LrtA as well as several hypothetical open reading frames with a complete inverse behaviour in the light cycle. These transcripts showed a stronger accumulation in the light but a weaker accumulation in the dark in M-NM-^TkaiABC cells in comparison to the wild type. In addition, we found a considerable overlap with microarray data obtained for hik31 and sigE mutants. These genes are known to be important regulators of cell metabolism in the dark. Three timepoints with two samples (WT and Mutant). Two replicates for each timepoint/sample. RNA hybridization.
Project description:In contrast to Synechococcus elongatus PCC 7942, which has been the model cyanobacterium for the study of the prokaryotic circadian clock for more than 20 years, only few data exist on the circadian behaviour of the widely used cyanobacterium Synechocystis sp. PCC 6803. The standard kaiABC operon present in this organism was shown to encode a functional KaiC protein which interacts with KaiA, similar to the Synechococcus elongatus PCC 7942 clock. Inactivation of this operon in Synechocystis sp. PCC 6803 resulted in a mutant with a strong growth defect in light-dark cycles, which was even more pronounced when glucose was added to the growth medium. In addition, mutants showed a bleaching phenotype. No effects were detected in mutant cells grown in constant light. Microarray experiments performed with cells grown for one day in a light-dark cycle revealed many differentially regulated genes with known functions in the ΔkaiABC mutant in comparison to the wild type. Most interestingly, we identified genes like the gene encoding the cyanobacterial phytochrome Cph1 and the light repressed protein LrtA as well as several hypothetical open reading frames with a complete inverse behaviour in the light cycle. These transcripts showed a stronger accumulation in the light but a weaker accumulation in the dark in ΔkaiABC cells in comparison to the wild type. In addition, we found a considerable overlap with microarray data obtained for hik31 and sigE mutants. These genes are known to be important regulators of cell metabolism in the dark.
Project description:The model cyanobacterium Synechocystis sp. PCC 6803 was used for a systematic survey of differential expression with a focus on antisense (as)RNAs and non-coding (nc)RNAs. A microarray was constucted with on average 5 probes for each transcript known thus far, including ncRNAs and asRNAs. The resulting 20,431 individual probes are duplicated on the array (Agilent 4x44k custom array) representing a technical replicate. Hybridization of this array with total RNA isolated from cultures raised under different growth conditions identified transcripts from intergenic spacers and in antisense orientation to known genes (natural cis-asRNAs) with differential expression compared to control hybridizations. This shows the involvement of such transcripts in the regulation of adaptation to various stresses. 12 RNA hybridizations (1 control & 3 stress conditions, 3 times each)
Project description:The model cyanobacterium Synechocystis sp. PCC 6803 was used for a systematic survey of differential expression with a focus on antisense (as)RNAs and non-coding (nc)RNAs. A microarray was constucted with on average 5 probes for each transcript known thus far, including ncRNAs and asRNAs. The resulting 20,431 individual probes are duplicated on the array (Agilent 4x44k custom array) representing a technical replicate. Hybridization of this array with total RNA isolated from cultures raised under different growth conditions identified transcripts from intergenic spacers and in antisense orientation to known genes (natural cis-asRNAs) with differential expression compared to control hybridizations. This shows the involvement of such transcripts in the regulation of adaptation to various stresses.