Project description:To reveal the effects of β-catenin knockout or acute SWI/SNF (BAF) inhibition on chromatin accessibility, we performed knockout of β-catenin or treated cells with 1 µM of BAF inhibitor BRM014 or DMSO vehicle control and performed ATAC-seq. Analysis of altered DNA accessibility in H295R cells revealed that sites with Steroidogenic Factor-1 (SF-1) motifs had the strongest loss of DNA accessibility. In HEK 293T cells, sites with motifs belonging to β-catenin binding partners (specifically YAP binding-partner TEAD, SOX, or FOXO motifs) had loss of DNA accessibility upon either BAF inhibition or β-catenin knockout.
Project description:To reveal the genome-wide targets of SWI/SNF complexes in AML cells, we performed ATAC-seq in THP-1, MOLM-13, and MV-4-11 cells with or without the SWI/SNF ATPase BRM014. Analysis of the locations decreased following 24 or 72 h after addition of BRM014 revealed that SWI/SNF-dependent sites are located at enhancers occupied by PU.1, especially the blood enhancer cluster (BENC), a set of enhancers that drives expression of MYC.
Project description:SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes displace nucleosomes to promote the access of transcription factors to enhancers and promoters. Despite the critical roles of SWI/SNF in animal development and tumorigenesis, how signaling pathways recruit SWI/SNF complexes to their target genes is unclear. Here, we demonstrate that target gene activation mediated by Beta-catenin, the essential transcriptional coactivator in the Wnt signal transduction pathway, requires ubiquitylation of the SWI/SNF component Brahma-related gene-1 (BRG1) by the E3 ubiquitin ligase Thyroid Hormone Receptor Interactor 12 (TRIP12). TRIP12 depletion in Drosophila, zebrafish, mouse organoids, and human cells attenuates Wnt signaling. Genetic epistasis experiments place TRIP12 activity downstream of the Beta-catenin destruction complex. TRIP12 interacts with and ubiquitylates BRG1, and BRG1 depletion blocks TRIP12-mediated Wnt pathway activation. TRIP12 promotes BRG1 binding to Beta-catenin in the presence of Wnt. Our findings support a model in which TRIP12 ubiquitylates BRG1 in the presence of Wnt and promotes its interaction with Beta-catenin, thereby bringing SWI/SNF to Wnt target genes. Our studies suggest a general mechanism by which cell signaling induces the interaction between BRG1 and pathway-specific transcription factors to recruit SWI/SNF complexes to their appropriate target genes.
Project description:The SWI/SNF (or BAF) complex is an essential chromatin remodeler that regulates DNA accessibility at developmental genes and enhancers. SWI/SNF subunits are among the most frequently mutated genes in cancer and neurodevelopmental disorders. These mutations are often heterozygous loss-of-function alleles, indicating a dosage-sensitive role for SWI/SNF subunits in chromatin regulation. However, the molecular mechanisms that regulate SWI/SNF subunit dosage to ensure proper complex assembly remain largely unexplored. We performed a genome-wide CRISPR KO screen, using epigenome editing in mouse embryonic stem cells, and identified Mlf2 and Rbm15 as regulators of SWI/SNF complex activity. First, we show that MLF2, a poorly characterized chaperone protein, regulates a subset of SWI/SNF target genes by promoting its chromatin remodeling activity. Rapid degradation of MLF2 reduces chromatin accessibility at sites that depend on high levels of SWI/SNF binding to maintain open chromatin. Next, we find that RBM15, part of the m6A RNA methylation writer complex, controls m6A modifications on specific SWI/SNF mRNAs to regulate protein levels of these subunits. Misregulation of m6A methylation causes overexpression of core SWI/SNF subunits leading to the assembly of incomplete complexes lacking the catalytic ATPase/ARP subunits. These data indicate that targeting modulators of SWI/SNF complex assembly may offer a potent therapeutic strategy for diseases associated with impaired chromatin remodeling.
Project description:The SWI/SNF (or BAF) complex is an essential chromatin remodeler that regulates DNA accessibility at developmental genes and enhancers. SWI/SNF subunits are among the most frequently mutated genes in cancer and neurodevelopmental disorders. These mutations are often heterozygous loss-of-function alleles, indicating a dosage-sensitive role for SWI/SNF subunits in chromatin regulation. However, the molecular mechanisms that regulate SWI/SNF subunit dosage to ensure proper complex assembly remain largely unexplored. We performed a genome-wide CRISPR KO screen, using epigenome editing in mouse embryonic stem cells, and identified Mlf2 and Rbm15 as regulators of SWI/SNF complex activity. First, we show that MLF2, a poorly characterized chaperone protein, regulates a subset of SWI/SNF target genes by promoting its chromatin remodeling activity. Rapid degradation of MLF2 reduces chromatin accessibility at sites that depend on high levels of SWI/SNF binding to maintain open chromatin. Next, we find that RBM15, part of the m6A RNA methylation writer complex, controls m6A modifications on specific SWI/SNF mRNAs to regulate protein levels of these subunits. Misregulation of m6A methylation causes overexpression of core SWI/SNF subunits leading to the assembly of incomplete complexes lacking the catalytic ATPase/ARP subunits. These data indicate that targeting modulators of SWI/SNF complex assembly may offer a potent therapeutic strategy for diseases associated with impaired chromatin remodeling.
Project description:Here we performed transcriptional profiling of the prostate cancer cell lines LNCaP and 22Rv1 comparing non-targeting siRNA treatment versus siRNAs targeting SWI/SNF complex proteins (SMARCA2, SMARCA4, and SMARCB1). Goal was to determine the effect of SWI/SNF knockdown on gene expression in prostate cancer. Two-condition experiment: non-targeting siRNA versus SWI/SNF-siRNA treated cells. Three SWI/SNF proteins were targeted: SMARCA2, SMARCA4, and SMARB1. Biological replicates: 1 control replicate, 2 treatment replicates per SWI/SNF protein. Technical replicates: 1 replicate per SWI/SNF protein. Cell lines: 22Rv1 and LNCaP.
Project description:A systems understanding of nuclear organization and events is critical for determining how cells divide, differentiate and respond to stimuli and for identifying the causes of diseases. Chromatin remodeling complexes such as SWI/SNF have been implicated in a wide variety of cellular processes including gene expression, nuclear organization, centromere function and chromosomal stability, and mutations in SWI/SNF components have been linked to several types of cancer. To better understand the biological processes in which chromatin remodeling proteins participate we globally mapped binding regions for several components of the SWI/SNF complex throughout the human genome using ChIP-Seq. SWI/SNF components were found to lie near regulatory elements integral to transcription (e.g. 5M-bM-^@M-^Y ends, RNA Polymerases II and III and enhancers) as well as regions critical for chromosome organization (e.g. CTCF, lamins and DNA replication origins). To further elucidate the association of SWI/SNF subunits with each other as well as with other nuclear proteins we also analyzed SWI/SNF immunoprecipitated complexes by mass spectrometry. Individual SWI/SNF factors are associated with their own family members as well as with cellular constituents such as nuclear matrix proteins, key transcription factors and centromere components implying a ubiquitous role in gene regulation and nuclear function. We find an overrepresentation of both SWI/SNF-associated regions and proteins in cell cycle and chromosome organization. Taken together the results from our ChIP and immunoprecipitation experiments suggest that SWI/SNF facilitates gene regulation and genome function more broadly and through a greater diversity of interactions than previously appreciated. ChIP-Seq analysis of the SWI/SNF subunits Ini1, Brg1, BAF155 and BAF170 in HeLa S3 cells
Project description:Transcriptional regulation in response to thyroid hormone (3,5,3´-triiodo-L-thyronine, T3) is a dynamic and cell-type specific process that maintains cellular homeostasis and identity in all tissues. However, our understanding of the mechanisms of thyroid hormone receptor (TR) actions at the molecular level are actively being refined. We used an integrated genomics approach to profile and characterize the cistrome of TRb, map changes in chromatin accessibility, and capture the transcriptomic changes in response to T3 in normal human thyroid cells. There are significant shifts in TRb genomic occupancy in response to T3, which are associated with differential chromatin accessibility, and differential recruitment of SWI/SNF chromatin remodelers. We further demonstrate selective recruitment of BAF and PBAF SWI/SNF complexes to TRb binding sites, revealing novel differential functions in regulating chromatin accessibility and gene expression. Our findings highlight three distinct modes of TRb interaction with chromatin and coordination of coregulator activity.
Project description:This study profiles chromatin accessibility, gene expresison, transcription factor binding, and three-dimensional DNA-DNA contact changes upon rapid SWI/SNF ATPase inactivation in prostate cancer cells. SWI/SNF ATPases activity was disabled using a novel PROTAC degrader compound targeting the SMARCA2, SMARCA4 and PBRM1 subunits of the SWI/SNF remodeling complex.