SiRNA Knockdown of SWI/SNF complex proteins in prostate cancer cell lines
Ontology highlight
ABSTRACT: Here we performed transcriptional profiling of the prostate cancer cell lines LNCaP and 22Rv1 comparing non-targeting siRNA treatment versus siRNAs targeting SWI/SNF complex proteins (SMARCA2, SMARCA4, and SMARCB1). Goal was to determine the effect of SWI/SNF knockdown on gene expression in prostate cancer. Two-condition experiment: non-targeting siRNA versus SWI/SNF-siRNA treated cells. Three SWI/SNF proteins were targeted: SMARCA2, SMARCA4, and SMARB1. Biological replicates: 1 control replicate, 2 treatment replicates per SWI/SNF protein. Technical replicates: 1 replicate per SWI/SNF protein. Cell lines: 22Rv1 and LNCaP.
Project description:Here we performed transcriptional profiling of the prostate cancer cell lines LNCaP and 22Rv1 comparing non-targeting siRNA treatment versus siRNAs targeting SWI/SNF complex proteins (SMARCA2, SMARCA4, and SMARCB1). Goal was to determine the effect of SWI/SNF knockdown on gene expression in prostate cancer.
Project description:SChLAP1 is a novel long non-coding RNA expressed in prostate cancer. Here we performed transcriptional profiling of the prostate cancer cell lines LNCaP and 22Rv1 comparing non-targeting siRNA treatment versus SChLAP1-siRNA treatment. Goal was to determine the effect of SChLAP1 knockdown on gene expression in prostate cancer. Two-condition experiment: non-targeting siRNA versus SChLAP1 siRNA treated cells. Biological replicates: 1 control replicate, 2 treatment replicates. Technical replicates: 3 replicates per SChLAP1 siRNA. Cell lines: 22Rv1 and LNCaP.
Project description:Advanced prostate cancer initially responds to hormonal treatment, but ultimately becomes resistant and requires more potent therapies. One mechanism of resistance seen in 10% of these patients is through lineage plasticity, which manifests in a partial or complete small cell or neuroendocrine prostate cancer (NEPC) phenotype. Here, we investigate the role of the mammalian SWI/SNF chromatin remodeling complex in NEPC. Using large patient datasets, patient-derived organoids and cancer cell lines, we identify SWI/SNF subunits that are deregulated in NEPC, demonstrate that SMARCA4 (BRG1) overexpression is associated with aggressive disease and that SMARCA4 depletion impairs prostate cancer cell growth. We also show that SWI/SNF complexes interact with different lineage-specific factors in prostate adenocarcinoma and in NEPC cells, and that induction of lineage plasticity through depletion of REST is accompanied by changes in SWI/SNF genome occupancy. These data suggest a specific role for mSWI/SNF complexes in therapy-related lineage plasticity, which may be relevant for other solid tumors.
Project description:This study profiles chromatin accessibility, gene expresison, transcription factor binding, and three-dimensional DNA-DNA contact changes upon rapid SWI/SNF ATPase inactivation in prostate cancer cells. SWI/SNF ATPases activity was disabled using a novel PROTAC degrader compound targeting the SMARCA2, SMARCA4 and PBRM1 subunits of the SWI/SNF remodeling complex.
Project description:This study profiles chromatin accessibility, gene expresison, transcription factor binding, and three-dimensional DNA-DNA contact changes upon rapid SWI/SNF ATPase inactivation in prostate cancer cells. SWI/SNF ATPases activity was disabled using a novel PROTAC degrader compound targeting the SMARCA2, SMARCA4 and PBRM1 subunits of the SWI/SNF remodeling complex.
Project description:This study profiles chromatin accessibility, gene expresison, transcription factor binding, and three-dimensional DNA-DNA contact changes upon rapid SWI/SNF ATPase inactivation in prostate cancer cells. SWI/SNF ATPases activity was disabled using a novel PROTAC degrader compound targeting the SMARCA2, SMARCA4 and PBRM1 subunits of the SWI/SNF remodeling complex.
Project description:This study profiles chromatin accessibility, gene expresison, transcription factor binding, and three-dimensional DNA-DNA contact changes upon rapid SWI/SNF ATPase inactivation in prostate cancer cells. SWI/SNF ATPases activity was disabled using a novel PROTAC degrader compound targeting the SMARCA2, SMARCA4 and PBRM1 subunits of the SWI/SNF remodeling complex.
Project description:We sought to determine the effects of SMARCA4 and SMARCA2 depletion in prostate cancer cell lines. We performed siRNA-mediated knock-down of SMARCA4 and SMARCA2 in an androgen-sensitive (LNCaP) cell line and in a castration-resistant prostate cancer (CRPC)-adenocarcinoma cell line (22Rv1) and compared global transcriptional alterations using RNA-seq.
Project description:While oncogenes can potentially be inhibited with small molecules, the loss of tumor suppressors is more common and is problematic because the tumor suppressor proteins are no longer present to be targeted. Notable examples include SMARCB1-mutant cancers, which are highly lethal malignancies driven by the inactivation of a subunit of SWI/SNF chromatin remodeling complexes. To generate mechanistic insight into the consequences of SMARCB1 mutation and to identify vulnerabilities, we contributed 14 SMARCB1-mutant cell lines to a near genome-wide CRISPR screen as part of the Cancer Dependency Map Project1-3. Here, we report that the little-studied gene DDB1-CUL4 Associated Factor 5 (DCAF5) is required for the survival of SMARCB1-mutant cancers. We show that DCAF5 serves a quality control function for SWI/SNF complexes and promotes degradation of incompletely assembled SWI/SNF complexes in the absence of SMARCB1. Upon depletion of DCAF5, SMARCB1-deficient SWI/SNF complexes re-accumulate, bind to target loci, and restore SWI/SNF-mediated gene expression to levels sufficient to reverse the cancer state, including in vivo. Consequently, cancer results not from the loss of SMARCB1 function per se but rather from DCAF5-mediated degradation of SWI/SNF complexes. These data indicate that therapeutic targeting of ubiquitin-mediated quality control factors may effectively reverse the malignant state of some cancers driven by disruption of tumor suppressor complexes.
Project description:While oncogenes can potentially be inhibited with small molecules, the loss of tumor suppressors is more common and is problematic because the tumor suppressor proteins are no longer present to be targeted. Notable examples include SMARCB1-mutant cancers, which are highly lethal malignancies driven by the inactivation of a subunit of SWI/SNF chromatin remodeling complexes. To generate mechanistic insight into the consequences of SMARCB1 mutation and to identify vulnerabilities, we contributed 14 SMARCB1-mutant cell lines to a near genome-wide CRISPR screen as part of the Cancer Dependency Map Project1-3. Here, we report that the little-studied gene DDB1-CUL4 Associated Factor 5 (DCAF5) is required for the survival of SMARCB1-mutant cancers. We show that DCAF5 serves a quality control function for SWI/SNF complexes and promotes degradation of incompletely assembled SWI/SNF complexes in the absence of SMARCB1. Upon depletion of DCAF5, SMARCB1-deficient SWI/SNF complexes re-accumulate, bind to target loci, and restore SWI/SNF-mediated gene expression to levels sufficient to reverse the cancer state, including in vivo. Consequently, cancer results not from the loss of SMARCB1 function per se but rather from DCAF5-mediated degradation of SWI/SNF complexes. These data indicate that therapeutic targeting of ubiquitin-mediated quality control factors may effectively reverse the malignant state of some cancers driven by disruption of tumor suppressor complexes.