Project description:Transcription profiling by array of cultured bronchial epithelial cells from patients with asthma and healthy individuals after infection with human rhinovirus
Project description:Rhinovirus infections are the most common cause of asthma exacerbations. The complex responses by the airway epithelium to rhinovirus can be captured by gene expression profiling. We hypothesized that the upper and lower airway epithelium exhibit differential responses to double-stranded RNA (dsRNA), and that this is modulated by the presence of asthma and allergic rhinitis. Identification of dsRNA-induced gene expression profiles by microarray of primary nasal and bronchial epithelial cells from the same individuals and examining the impact of allergic rhinitis with and without concomitant allergic asthma on expression profiles. 17 subjects were included in a cross-sectional study (6 allergic asthma and allergic rhinitis; 5 allergic rhinitis; 6 healthy controls). RNA was extracted from isolated and cultured epithelial cells that were stimulated with Poly(I:C) for 24 hours from bronchial brushes and nasal biopsies, and analyzed by microarray (Affymetrix U133+ PM Genechip Array).
Project description:Rhinovirus infections are the most common cause of asthma exacerbations. The complex responses by the airway epithelium to rhinovirus can be captured by gene expression profiling. We hypothesized that the upper and lower airway epithelium exhibit differential responses to double-stranded RNA (dsRNA), and that this is modulated by the presence of asthma and allergic rhinitis. Identification of dsRNA-induced gene expression profiles by microarray of primary nasal and bronchial epithelial cells from the same individuals and examining the impact of allergic rhinitis with and without concomitant allergic asthma on expression profiles.
Project description:Rhinovirus infections exacerbate chronic respiratory inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD). Airway epithelial cells are the primary site of rhinovirus replication and responsible for initiating the host immune response to infection. Numerous studies have reported that the anti-viral innate immune response in asthma is deficient leading to the conclusion that epithelial innate immunity is a key determinant of disease severity during a rhinovirus induced exacerbation. However, deficient rhinovirus-induced epithelial interferon production in asthma has not always been observed. We hypothesised that disparate in vitro airway epithelial infection models lacking genome-wide, time-course analyses have obscured the role of epithelial innate anti-viral immunity in asthma and COPD. To address this, we developed a low multiplicity of infection (MOI) rhinovirus model of differentiated primary epithelial cells obtained from healthy, asthma and COPD donors. Using genome-wide gene expression following infection, we demonstrated that gene expression patterns are similar across patient groups, but that the kinetics of induction are delayed in cells obtained from asthma and COPD donors. Rhinovirus-induced innate immune responses were defined by interferons (type-I, II and III), interferon response factors (IRF1, IRF3 and IRF7), TLR signalling and NF‐kB and STAT1 activation. Induced gene expression was evident at 24 hours and peaked at 48 hours post‐infection in cells from healthy subjects. In contrast, in cells from donors with asthma or COPD induction was maximal at or beyond 72-96 hours post infection. Thus, we propose that propensity for viral exacerbations of asthma and COPD relate to delayed (rather than deficient) expression of epithelial cell innate anti-viral immune genes which in turns leads to a delayed and ultimately more inflammatory host immune response.
Project description:Human Rhinovirus (HRV) infection can trigger exacerbations of asthma. Understanding of the mechanisms provoking airway inflammation and remodeling in asthma, as well as the pathogenic mechanisms of HRV infection and its association with asthma exacerbations, may offer significant opportunities for improved disease management. Genome-wide expression analysis of HRV type 1A-infected primary bronchial epithelial (PBE) cells from normal and asthmatic donors was performed to determine whether asthma is associated with a unique pattern of gene expression after HRV infection in vitro. Keywords: response to rhinovirus infection
Project description:Asthma is a very frequent airway disease that affects 6 to 20% of the population. Severe asthma, represents 3 to 5% of all asthmatic patients and is histologically characterized by an increased bronchial smooth muscle (BSM) mass and clinically by viral exacerbations. Functionally, BSM remodeling had a poor prognostic value in asthma, since higher BSM mass was associated with lower lung function and increased exacerbation rate. However, the role of BSM as a potential actor of asthma exacerbation has only been sparsely suggested. We thus hypothesis that asthmatic BSM cells could act on bronchial epithelium and modified its response to rhinovirus infection.
Project description:Human Rhinovirus (HRV) infection can trigger exacerbations of asthma. Understanding of the mechanisms provoking airway inflammation and remodeling in asthma, as well as the pathogenic mechanisms of HRV infection and its association with asthma exacerbations, may offer significant opportunities for improved disease management. Genome-wide expression analysis of HRV type 1A-infected primary bronchial epithelial (PBE) cells from normal and asthmatic donors was performed to determine whether asthma is associated with a unique pattern of gene expression after HRV infection in vitro. Experiment Overall Design: Frozen stocks of human PBE cells obtained from the bronchial brushings of six normal and five asthmatic individuals were grown in vitro in Bronchial Epithelial Growth Media (BEGM, Lonza). Subconfluent monolayers of PBE cells were infected with purified and concentrated minor group HRV serotype 1A at multiplicity of infection of 10 plaque forming units (pfu) per cell or mock-infected with growth media alone. Cells were lysed 16 hours post infection (p.i.) and isolated total RNAs were analyzed using the Human Genome U133 Plus 2.0 GeneChip arrays (Affymetrix, Santa Clara, CA).
Project description:To elucidate the epithelial cell diversity within the nasal inferior turbinates, a comprehensive investigation was conducted comparing control subjects to individuals with house dust mite-induced allergic rhinitis. This study aimed to delineate the differential expression profiles and phenotypic variations of epithelial cells in response to allergic rhinitis. This research elucidated distinct subpopulations and rare cell types of epithelial cells within the nasal turbinates, discerning alterations induced by allergic rhinitis. Furthermore, by interrogating transcriptomic signatures, the investigation provided novel insights into the cellular dynamics and immune responses underlying allergic rhinitis pathogenesis