Project description:ATAC-seq of tobacco callus cells cultured by different NAA concentrations during in vitro tissue culture illustrates the landscape of chromatin openness across the entire genome,which provides a novel direction and theoretical basis for improving gene editing efficiency in plants by modulating chromatin accessibility through auxin signaling and tissue culture conditions.
Project description:Auxin-inducible degron (AID) technology is powerful for chemogenetic control of proteolysis. However, generation of human cell lines to deplete endogenous proteins with AID remains challenging. Typically, homozygous degron-tagging efficiency is low and overexpression of an auxin receptor requires additional engineering steps. Here, we establish a one-step genome editing procedure with high-efficiency homozygous tagging and auxin receptor expression. We demonstrate its application in 5 human cell lines, including embryonic stem (ES) cells. The method allowed isolation of AID single-cell clones in 10 days for 11 target proteins with >80% average homozygous degron-tagging efficiency in A431 cells, and >50% efficiency for 5 targets in H9 ES cells. The tagged endogenous proteins were inducibly degraded in all cell lines, including ES cells and ES-cell derived neurons, with robust expected functional readouts. This method facilitates the application of AID for studying endogenous protein functions in human cells, especially in stem cells.
Project description:The CRISPR/Cas9 system shows diverse levels of genome editing activities on eukaryotic genomic DNA targets, and experiments desire high-efficiency targets. Here we show that chromatin open status is a pivotal determinant of the Cas9 editing activity in mammalian cells, and increasing chromatin accessibility can efficiently improve Cas9 genome editing activity. However, the strategy that fusing the VP64 transcriptional activation domain at the C-terminus of Cas9 can only promote genome editing activity slightly at most tested CRISPR/Cas9 targets in Lenti-X 293T cells. Because histone acetylation increases eukaryotic chromatin accessibility, we further improve genome editing by elevating histone acetylation. We demonstrate that promoting histone acetylation using histone acetyltransferase (HAT) activator YF-2 can improve genome editing from Cas9 and more robustly from the Cas9 transcriptional activator. This provides a strategy to improve CRISPR/Cas9 genome editing activity and enables broader gRNA target choices in eukaryotes.
Project description:The prime editing (PE) system consists of a Cas9 nickase fused to a reverse transcriptase, which introduces precise edits into the target genomic region guided by a prime editing guide RNA. However, PE efficiency is limited by mismatch repair. To overcome this limitation, transient expression of a dominant-negative MLH1 (MLH1dn) has been used to inhibit key components of mismatch repair. Here, we designed a de novo MLH1 small binder (MLH1-SB) that binds to the dimeric interface of MLH1 and PMS2 using RFdiffusion and AlphaFold 3. The compact size of MLH1-SB enabled its integration into existing PE architectures via 2A systems, creating a novel PE-SB platform. The PE7-SB system significantly improved PE efficiency, achieving an 18.8-fold increase over PEmax and a 2.5-fold increase over PE7 in HeLa cells, as well as a 3.4-fold increase over PE7 in mice. This study highlights the potential of generative AI in advancing genome editing technology.
Project description:A-T to G-C base editing efficiency at targeted gene sites in HEK293T cells using the dCas12f-ABE design or the Cas12f-ABE design. Found that the total A-T to G-C conversion efficiency of Circular gRNAs exhibited about two-fold increase compared with U6 gRNAs. We further analyzed the pattern for A-T to G-C conversion on the target site, and observed that the most efficient base editing occurred in a narrow window A3 (3bp downstream of the PAM) similar to U6 gRNAs. In summary, Circular gRNAs with dCas12f-ABE design could enhance A-T to G-C base editing efficiency in a narrow window.
Project description:Prime editing is a powerful means of introducing precise changes to specific locations in mammalian genomes. However, the widely varying efficiency of prime editing across target sites of interest has limited its adoption in the context of both basic research and clinical settings. Here, we set out to exhaustively characterize the impact of the cis-chromatin environment on prime editing efficiency. Utilizing a newly developed and highly sensitive method for mapping the genomic locations of a randomly integrated “sensor”, we identify specific epigenetic features that strongly correlate with the highly variable efficiency of prime editing across different genomic locations. Next, to assess the interaction of trans-acting factors with the cis-chromatin environment, we develop and apply a pooled genetic screening approach with which the impact of knocking down various DNA repair factors on prime editing efficiency can be stratified by cis-chromatin context. Finally, we demonstrate that we can dramatically modulate the efficiency of prime editing through epigenome editing, i.e. enhancing (or restricting) local chromatin accessibility in order to increase (or decrease) the efficiency of prime editing at a target site. Looking forward, we envision that the insights and tools described here will broaden the range of both basic research and therapeutic contexts in which prime editing is useful.
Project description:Prime editing is a powerful means of introducing precise changes to specific locations in mammalian genomes. However, the widely varying efficiency of prime editing across target sites of interest has limited its adoption in the context of both basic research and clinical settings. Here, we set out to exhaustively characterize the impact of the cis-chromatin environment on prime editing efficiency. Utilizing a newly developed and highly sensitive method for mapping the genomic locations of a randomly integrated “sensor”, we identify specific epigenetic features that strongly correlate with the highly variable efficiency of prime editing across different genomic locations. Next, to assess the interaction of trans-acting factors with the cis-chromatin environment, we develop and apply a pooled genetic screening approach with which the impact of knocking down various DNA repair factors on prime editing efficiency can be stratified by cis-chromatin context. Finally, we demonstrate that we can dramatically modulate the efficiency of prime editing through epigenome editing, i.e. enhancing (or restricting) local chromatin accessibility in order to increase (or decrease) the efficiency of prime editing at a target site. Looking forward, we envision that the insights and tools described here will broaden the range of both basic research and therapeutic contexts in which prime editing is useful.
Project description:Prime editing is a powerful means of introducing precise changes to specific locations in mammalian genomes. However, the widely varying efficiency of prime editing across target sites of interest has limited its adoption in the context of both basic research and clinical settings. Here, we set out to exhaustively characterize the impact of the cis-chromatin environment on prime editing efficiency. Utilizing a newly developed and highly sensitive method for mapping the genomic locations of a randomly integrated “sensor”, we identify specific epigenetic features that strongly correlate with the highly variable efficiency of prime editing across different genomic locations. Next, to assess the interaction of trans-acting factors with the cis-chromatin environment, we develop and apply a pooled genetic screening approach with which the impact of knocking down various DNA repair factors on prime editing efficiency can be stratified by cis-chromatin context. Finally, we demonstrate that we can dramatically modulate the efficiency of prime editing through epigenome editing, i.e. enhancing (or restricting) local chromatin accessibility in order to increase (or decrease) the efficiency of prime editing at a target site. Looking forward, we envision that the insights and tools described here will broaden the range of both basic research and therapeutic contexts in which prime editing is useful.