Project description:To identify the genes directly regulated by H3K36me2 on a genome-wide scale, we performed CUT&Tag assays using a H3K36me2 specific antibody in KN (Ksp-Cre; Nsd2 OE/+) and WT mice.
Project description:To explore the possible role of Nsd2 in kidney cancer, the gene expression profile of kisney tissues from KMN (Ksp-Cre; Myc OE/+; Nsd2 OE/+) and littermate KM (Ksp-Cre; Myc OE/+) mice was examined by RNA sequencing(RNA-Seq).
Project description:We found that the incorporation of histone H3 variant H3.3 was impaired and the accumulation of ZMYND11, which specifically binds to H3.3K36me3, was decreased in NSD2 KO MEFs. About H3K36me2, the average gene body profiles of H3K36me2 showed preferential enrichment of H3K36me2 at the promoter and first half of the genic regions. We examined H3K36me2 mark in super enhancer regions using the ROSE super enhancer prediction program and identified of the 519 super enhancer islands of H3K36me2 in WT MEFs the H3K36me2 signals were decreased in NSD2 KO MEFs
Project description:NSD2 (also named MMSET and WHSC1) is a histone lysine methyltransferase that is implicated in diverse diseases and commonly overexpressed in multiple myeloma due to a recurrent t(4;14) chromosomal translocation. However, the precise catalytic activity of NSD2 is obscure, preventing progress in understanding how this enzyme influences chromatin biology and myeloma pathogenesis. Here we show that dimethylation of histone H3 at lysine 36 (H3K36me2) is the principal chromatin-regulatory activity of NSD2. Catalysis of H3K36me2 by NSD2 is sufficient for gene activation. In t(4;14)-positive myeloma cells, the normal genome-wide and gene-specific distribution of H3K36me2 is obliterated, creating a chromatin landscape that selects for a transcription profile favorable for myelomagenesis. Catalytically active NSD2 confers xenograft tumor formation and invasion capacity upon t(4;14)-negative cells and NSD2 promotes oncogenic transformation of primary cells in an H3K36me2-dependent manner. Together our findings establish H3K36me2 as the primary product generated by NSD2, and demonstrate that genomic disorganization of this canonical chromatin mark initiates oncogenic programming. ChIP sequencing of H3K36me2 ChIP DNA from KMS11 and TKO2 cells using Illumina Solexa Genome Analyzer II single end sequencing protocol. The experiment contains two biological replicates of H3K36me2 ChIP DNA and input materials from KMS11 and TKO2 cells.
Project description:NSD2 (also named MMSET and WHSC1) is a histone lysine methyltransferase that is implicated in diverse diseases and commonly overexpressed in multiple myeloma due to a recurrent t(4;14) chromosomal translocation. However, the precise catalytic activity of NSD2 is obscure, preventing progress in understanding how this enzyme influences chromatin biology and myeloma pathogenesis. Here we show that dimethylation of histone H3 at lysine 36 (H3K36me2) is the principal chromatin-regulatory activity of NSD2. Catalysis of H3K36me2 by NSD2 is sufficient for gene activation. In t(4;14)-positive myeloma cells, the normal genome-wide and gene-specific distribution of H3K36me2 is obliterated, creating a chromatin landscape that selects for a transcription profile favorable for myelomagenesis. Catalytically active NSD2 confers xenograft tumor formation and invasion capacity upon t(4;14)-negative cells and NSD2 promotes oncogenic transformation of primary cells in an H3K36me2-dependent manner. Together our findings establish H3K36me2 as the primary product generated by NSD2, and demonstrate that genomic disorganization of this canonical chromatin mark initiates oncogenic programming. Genome-wide expression profiling of KMS11 cells stably transduced with control vector in comparison to two independent shRNAs against NSD2. Each cell line is tested in duplicate.
Project description:NSD2 (also named MMSET and WHSC1) is a histone lysine methyltransferase that is implicated in diverse diseases and commonly overexpressed in multiple myeloma due to a recurrent t(4;14) chromosomal translocation. However, the precise catalytic activity of NSD2 is obscure, preventing progress in understanding how this enzyme influences chromatin biology and myeloma pathogenesis. Here we show that dimethylation of histone H3 at lysine 36 (H3K36me2) is the principal chromatin-regulatory activity of NSD2. Catalysis of H3K36me2 by NSD2 is sufficient for gene activation. In t(4;14)-positive myeloma cells, the normal genome-wide and gene-specific distribution of H3K36me2 is obliterated, creating a chromatin landscape that selects for a transcription profile favorable for myelomagenesis. Catalytically active NSD2 confers xenograft tumor formation and invasion capacity upon t(4;14)-negative cells and NSD2 promotes oncogenic transformation of primary cells in an H3K36me2-dependent manner. Together our findings establish H3K36me2 as the primary product generated by NSD2, and demonstrate that genomic disorganization of this canonical chromatin mark initiates oncogenic programming. Genome-wide expression profiling of p19ARF-/- mouse embryonic fibroblasts stably transduced with control vector or wild-type NSD2. Each cell line is tested in triplicate.
Project description:NSD2 (also named MMSET and WHSC1) is a histone lysine methyltransferase that is implicated in diverse diseases and commonly overexpressed in multiple myeloma due to a recurrent t(4;14) chromosomal translocation. However, the precise catalytic activity of NSD2 is obscure, preventing progress in understanding how this enzyme influences chromatin biology and myeloma pathogenesis. Here we show that dimethylation of histone H3 at lysine 36 (H3K36me2) is the principal chromatin-regulatory activity of NSD2. Catalysis of H3K36me2 by NSD2 is sufficient for gene activation. In t(4;14)-positive myeloma cells, the normal genome-wide and gene-specific distribution of H3K36me2 is obliterated, creating a chromatin landscape that selects for a transcription profile favorable for myelomagenesis. Catalytically active NSD2 confers xenograft tumor formation and invasion capacity upon t(4;14)-negative cells and NSD2 promotes oncogenic transformation of primary cells in an H3K36me2-dependent manner. Together our findings establish H3K36me2 as the primary product generated by NSD2, and demonstrate that genomic disorganization of this canonical chromatin mark initiates oncogenic programming. Genome-wide expression profiling of KMS11 and t(4;14) translocation knockout (TKO) cells. Each cell line is tested in triplicate.
Project description:Our study aims to characterize the different H3K36me2 modification genes between Wild Type and Nsd2 Treg cells conditional knock out groups in Treg cells, and find the influenced pathways and functions, moreover, we can clarify the NSD2 functions in Treg cells. It can be a clue for further Treg cells study.
Project description:The histone methyltransferase NSD2/WHSC1/MMSET is overexpressed in a number of solid tumors but its contribution to the biology of these tumors is not well understood. Here, we describe that NSD2 contributes to the proliferation of a subset of lung cancer cell lines by supporting oncogenic RAS transcriptional responses. Co-treatment with MEK and BRD4 inhibitors causes co-operative inhibitory responses on cell growth. While these inhibitors converge in the downregulation of genes associated with cancer-acquired super-enhancers, NSD2 inhibition complements their action by affecting the expression of clusters of genes embedded in megabase-scale regions marked with H3K36me2. Thus, combinatorial therapies using MEK or BRD4 inhibitors together with NSD2 inhibition ensure a more comprehensive inhibition of oncogenic RAS-driven transcription programs.
Project description:NSD2 is a histone methyltransferase that specifically dimethylates histone H3 lysine 36 (H3K36me2), a modification associated with gene activation. Dramatic overexpression of NSD2 in t(4;14) multiple myeloma (MM) and an activating mutation of NSD2 discovered in acute lymphoblastic leukemia (ALL) are significantly associated with altered gene activation, transcription and DNA damage repair. The partner proteins through which NSD2 may influence critical cellular processes remain poorly defined. In this study, we utilized proximity-based labelling (BioID) combined with label-free quantitative mass spectrometry to identify high confidence NSD2 interacting partners in MM cells.